
UNIVERSITÉ LIBRE DE BRUXELLES

Faculté des Sciences
Département de Mathématique
Année Académique 2020/2021

Thèse présentée en vue de l’obtention du grade de Docteur en Sciences

Two Approaches to
Approximation Algorithms for

Vertex Deletion Problems

by

Matthew Drescher

Jury de thèse:
Prof. Jean Cardinal (Université libre de Bruxelles, Président)
Prof. Gwenaël Joret (Université libre de Bruxelles, Secrétaire)
Prof. Matthias Mnich (Hamburg University of Technology)
Prof. Karthekeyan Chandrasekaran (University of Illinois, Urbana-Champaign)
Prof. Samuel Fiorini (Université libre de Bruxelles, Promoteur)

Contents

Summary 5

Résumé 7

Acknowledgements 9

Part 1. Background and Context 11

Chapter 1. Introduction 13

Chapter 2. Preliminaries 19
2.1. Sets and Weight functions 19
2.2. Graphs 19
2.3. Hypergraphs 20
2.4. Combinatorial Optimization 20
2.5. Algorithms 22

Chapter 3. Tools and Techniques 23
3.1. Local Ratio Lemma 23
3.2. Good Subgraphs 25
3.3. Polyhedral Tools 29
3.4. Diagonals in E3-Vertex Cover 31

Part 2. The Main Results 33

Chapter 4. Claw Vertex Deletion 35
4.1. Background 35
4.2. Good Subgraphs 35
4.3. A Rounding Attempt 36
4.4. Hardness Result 36
4.5. Concluding Remarks 37

Chapter 5. Feedback Vertex Problem in Tournaments 39
5.1. Overview 39
5.2. Diagonals and Light Tournaments 42
5.3. The Layering Procedure 44
5.4. The Algorithm 49
5.5. Concluding Remarks 50

Chapter 6. Cluster Vertex Deletion 51
6.1. Overview 51
6.2. Finding 2-good induced subgraphs 56

3

4 CONTENTS

6.3. Running-time Analysis 61
6.4. Polyhedral results 63
6.5. Concluding Remarks 68

Chapter 7. Split Graph Deletion 71
7.1. Hardness 71
7.2. A Simple, almost tight approximation algorithm 72

Part 3. Conclusions 75

Chapter 8. Open Questions 77

Chapter 9. Conclusions 79
9.1. Constant rounds of Sherali-Adams 79
9.2. Local Ratio 79

Bibliography 81

Summary

Weighted graphs are an important mathematical structure which can model
many types of algorithmic problems. Problems that are intractable in the general
case, often become efficiently solvable when restricted to smaller graph classes G.
This motivates the question of how to best "modify" a graph so that it belongs
to a simpler graph class.

In this thesis, the graph classes we consider are defined by forbidding a finite
set of graphs F (called the obstruction set) as induced subgraphs. We study
the following problem through the lens of approximation algorithms: Given a
weighted graph (G,w), and a graph class G characterized by obstruction set F ,
find the smallest weight set of vertices that can be removed from G so that the
remaining graph belongs to G (G-Vertex Deletion).

This problem can be modelled as a vertex cover problem on k-uniform hy-
pergraphs (Ek-Vertex Cover) for which there is an easy k-approximation
algorithm. It is known that Ek-Vertex Cover is hard to approximate within
k− ε for any constant ε > 0 unless the Unique Games Conjecture is false [46] or
P=NP. Therefore the non-trivial approximation factors for a specific G-Vertex
Deletion problem is within the interval [2, k).

We develop two different methods which give improved approximation algo-
rithms for several instances of G-Vertex Deletion. The first is a refinement
of the local ratio approach given in Fiorini, Joret, Schaudt [28]. The second is
rooted in linear and integer programming. We use the Sherali-Adams hierar-
chy [60] to "automatically" strengthen the natural LP relaxation of Ek-Vertex
Cover. We then employ the standard technique of iterative rounding.

We use these tools to develop approximation algorithms for some well-known
G-Vertex Deletion problems: Deletion to Claw-free, Feedback Ver-
tex Set problem in Tournaments, Cluster Vertex Deletion, Split
Vertex Deletion. In these instances our methods do better than the trivial
factor and we obtain the following results which are our main contributions:

• We give a 2-approximation algorithm for Cluster Vertex Deletion
[3]. This tight result matches the hardness lower bound.
• We obtain a new deterministic 7/3-approximation algorithm for Feed-

back Vertex Set in Tournaments [2]. This result is based on the
LP given by just one round of Sherali-Adams.
• We find a new, simpler deterministic (2 + ε)-approximation algorithm
for Split Vertex Deletion [26].
• We give a 3-approximation algorithm for Claw-Free Vertex Dele-

tion in triangle-free graphs. In the case of general graphs we prove that
it is UGC-hard to obtain an approximation ratio of 3− ε.

5

6 SUMMARY

Finally we list some open questions. Some of these naturally arose, others
are motivated by computational experiments. The thesis concludes with some
remarks contrasting these two distinct approaches to designing approximation
algorithms.

Résumé

Les graphes pondérés sont des structures mathématiques importantes pou-
vant modeler de nombreux types de problèmes algorithmiques. Un grand nombre
de ces problèmes, malgré leur difficulté dans le cas général, deviennent efficace-
ment solubles une fois leurs entrées restreintes à une classe de graphes particulière
G.

Dans cette thèse, nous considérons des classes de graphes définies en in-
terdisant un ensemble fini de sous-graphes induits F (que nous nommons en-
semble d’obstruction). Nous étudions le problème suivant via des algorithmes
d’approximation: étant donné un graphe pondéré (G,w), une classe de graphes
G caractérisée par un ensemble d’obstruction F , trouver l’ensemble de sommets
de poids minimum tels qu’une fois retirés de G le graphe restant appartiennent
à G (G-Vertex Deletion).

Nous pouvons modéliser ce problème comme un problème de couverture de
sommets sur des hypergraphes k-uniformes (Ek-Vertex Cover) pour lesquels
il existe un algorithme de k-approximation simple. Cependant, Ek-Vertex
Cover est un problème difficile à mieux approximer: il est difficile d’obtenir un
ratio d’approximation meilleur que k− ε pour toute constante ε > 0 à moins que
la Unique Games Conjecture (UGC) soit fausse [46] ou que P=NP. Dès lors, les
ratios d’approximation non triviaux pour un problème de G-Vertex Deletion
en particulier se situent dans l’intervalle [2, k).

Nous développons deux différentes méthodes qui donnent de meilleurs al-
gorithmes d’approximation pour plusieurs instances de G-Vertex Deletion.
Le premier est une amélioration de l’approche par ratio local donnée par Fior-
ini, Joret, et Schaudt [28]. La deuxième exploite l’optimisation linéaire et
l’optimisation entière. Nous appliquons la hiérarchie de Sherali-Adams [60]
pour renforcer "automatiquement" la relaxation linéaire naturelle de Ek-Vertex
Cover. Nous employons ensuite la technique standard d’arrondi itératif (itera-
tive rounding).

Nous utilisons ces outils pour développer des algorithmes d’approximation
pour certains problèmes G-Vertex Deletion bien connus: Deletion to
Claw-free, Feedback Vertex Set problem in Tournaments, Clus-
ter Vertex Deletion, et Split Vertex Deletion. Notre contribution
principale consiste en de nouveaux algorithmes avec ratios d’approximation non-
triviaux:

• Nous donnons un algorithme avec ratio d’approximation de 2 pour
Cluster Vertex Deletion [3]. Ce ratio est le meilleur possible
étant donné l’existence d’une borne inférieure correspondante.

7

8 RÉSUMÉ

• Nous obtenons un nouvel algorithme déterministe avec ratio
d’approximation de 7/3 pour Feedback Vertex Set in Tourna-
ments [2]. Ce résultat est basé sur le programme d’optimisation linéaire
obtenu après une itération de Sherali-Adams.
• Nous trouvons un nouvel algorithme avec ratio d’approximation de 2+ε
pour Split Vertex Deletion, plus simple que les algorithmes exis-
tants [26].
• Nous donnons un algorithme avec ratio d’approximation de 3 pour

Claw-Free Vertex Deletion dans des graphes sans triangles. Dans
le cas de graphes généraux, nous prouvons qu’obtenir un meilleur ratio
est UGC-difficile.

Enfin, nous mentionnons quelques questions ouvertes, certaines d’entre-elles
survenant naturellement lors de notre recherche, d’autres motivées par des ex-
périmentations calculatoires. Nous concluons cette thèse par quelques remarques
contrastant les deux méthodes algorithmiques abordées dans notre thèse.

Acknowledgements

I would like to thank the European Research Council1 for supporting this
research.

I am incredibly thankful for the patient support of my supervisor Samuel
Fiorini. His ability, creativity and authentic passion for mathematics has been
truly inspiring. I am truly grateful to have even had the chance to work with
him.

Huge thanks to my friend and collaborator Tony Huynh for encouraging me
to apply to ULB, and supporting my journey back into mathematics. Thanks for
the endless patient explanations, and making life so absurdly hilarious, and fun.
Thank you to Aurélien Ooms, Marco Macchia, Manuel F. Aprile, Carole Muller
for making life in Brussels so pleasant socially and engaging mathematically.

I would like to thank Tim Roughgarden for being a sounding board and
encouraging me to actually make the leap back into academics.

Thanks to my friends Ion Oancea, Andy Dreyfus, Charlie Wyman for keeping
me focused and at least somewhat sane, and to my family for their constant love
and support.

I would like to dedicate this thesis to my wonderful Tenaya, whose loving sup-
port and patient enthusiasm for this endeavor has been galaxies beyond anything
I could have expected.

1ERC Consolidator Grant 615640-ForEFront.

9

Part 1

Background and Context

CHAPTER 1

Introduction

Graphs classes are of fundamental importance in Graph Theory, in particular
for algorithms. One prominent example is the class of bipartite graphs. Knowing
that a graph is bipartite gives access to significantly more tools than for general
graphs. For instance, the stable set problem on a bipartite graph can be solved
efficiently using network flow techniques [40]. In contrast, for general graphs
the problem can be hopelessly difficult. Another major example is the class of
graphs with treewidth at most t, where t is any constant. In this class, a host of
problems can be solved in polynomial time, as formalized by Courcelle’s theorem
[22]. A last example is the class of perfect graphs , that generalize bipartite
graphs. A premier result in algorithmic Graph Theory is that computing the
chromatic number, and finding a minimum coloring can be done in polynomial
time whenever the input graph is perfect [35].

Typically, graph classes are characterized by an obstruction set which is em-
bodied by a family F of non-isomorphic graphs. For a given F , we distinguish
three ways to define a class of graphs: either by taking induced subgraphs , or
subgraphs , or minors . An induced subgraph of a graph G is any graph that
can be obtained by deleting vertices. A subgraph of G is any graph that can
be obtained from G by deleting vertices and edges. A minor of G is any graph
that can be obtained from a subgraph of G by contracting edges. F-free graphs
are the graphs that do not have any induced subgraph isomorphic to a graph of
F . The classes of F-subgraph-free graphs and F-minor-free graphs are defined
similarly.

For instance, bipartite graphs are those which do not contain any odd cycle
as a subgraph, as proved by Kőnig in 1916 [47]. By the Graph Minor Theorem of
Robertson and Seymour [58], graphs with treewidth at most t can be character-
ized by a finite list of forbidden minors (although the complete list is known only
up to t = 3). The Strong Perfect Graph Theorem of Chudnovsky and Seymour
characterizes perfect graphs as those which forbid odd cycles of length 5 or more
and their complements as induced subgraphs [18]. For each of these three graph
classes, there is a well-defined obstruction set F .

Beyond those three examples, there are many more graph classes. The web-
site www.graphclasses.org [24] is the outcome of an effort toward a taxonomy
of graphs classes, the relations between them, and their algorithmic properties.

The four graph classes that are of particular interest in the context of this
thesis are the following ones, see Fig. 1.1:

(1) Cluster graphs are graphs whose connected components are all complete.
They are also the F -free graphs for F = {P3}, where P3 is the path on three
vertices.

13

www.graphclasses.org

14 1. INTRODUCTION

(2) Transitive tournaments are oriented complete graphs with no cycles. They
are also the F -free tournaments for F = {4}, where 4 is the directed cycle
on three vertices.

(3) Claw-free graphs are the F -free graphs for F = {K1,3}, where K1,3 is the
complete bipartite graph with one part of size one, and the other of size
three.

(4) Split graphs are the graphs whose vertices can be partitioned into a clique
and a stable set. They are also the F -free graphs for F = {C4, C5, C4},
where Ck denotes the cycle graph on k ≥ 3 vertices and C4 = 2K2 is the
complement of C4.
Tournaments are directed graphs, not graphs, and so technically the set of

transitive tournaments is not a graph class, but we treat it as such anyway. All
the classes we consider here are hereditary : for every graph G ∈ G, and every
vertex subset X, the graph G−X obtained by deleting the vertices of X is also
in G.

Cluster Graph
Transitive Tournament

Split Graph Claw Free

P3 4

C4 C5 2K2
K1,3

Figure 1.1. Top: The graph classes G considered in this thesis.
Bottom: Their corresponding obstruction sets F .

Let G be a graph class. Given a graph G that is not in G, a natural question is:
how close is G to being in G? For instance, how cheaply can we delete vertices to
make a given graph G bipartite? This motivates the following general problem.

Problem 1 (G-Vertex Deletion). Given graph G with weights on the
vertices, find a minimum weight set of vertices X such that G−X belongs to G.

We call a solution X to G-Vertex Deletion a hitting set .
Other types of graph modification problems exist as for instance G-Edge

Deletion where edges are deleted rather than vertices, and G-Edit where edges
can be added and deleted. We do not study these problems.

This thesis studies G-Vertex Deletion when G is one of the four classes
listed above, through the lens of Approximation Algorithms [51, 65, 67]. Another
popular viewpoint is that of Fixed Parameter Tractable Algorithms [23].

Perhaps the simplest example of a G-Vertex Deletion problem is Vertex
Cover. We use this historically significant problem as a vehicle to motivate and
illustrate ideas clearly. Given a weighted graph (G,w), the goal is to find a
minimum weight set of vertices to remove so that the remaining graph is “edge-
less”. Vertex Cover coincides with G-Vertex Deletion, where G is the
class of graphs with no edges, or equivalently G is the class of F -free graphs with
F := {K2}. Vertex Cover is one of Karp’s 21 NP-hard problems [45]. So

1. INTRODUCTION 15

unless P = NP , finding a solution in polynomial time, in the hardest instances,
means settling for something less than optimal. This situation naturally poses the
question: how close to optimal can we get? Approximation algorithms provide
a metric for answering this question and comparing different NP-hard problems
[67].

Of course, all of the G-Vertex Deletion problems we consider here are
minimization problems. We use the standard definition for approximation al-
gorithm, see for example [65]. For positive approximation factor α > 1, an α-
approximation algorithm for a minimization problem returns a feasible solution
that must:

(1) Be computed in polynomial time in the size of the input;
(2) Weigh no more than a factor of α of the weight of an optimal solution.

Unweighted Vertex Cover has a simple greedy 2-approximation algorithm:
take any inclusion-wise maximal matching and include all the matched vertices in
the solution. By maximality of the matching, the vertices selected form a feasible
solution to Vertex Cover. Moreover, any optimal solution must contain at
least half of these vertices. Therefore this algorithm provides a 2-approximation.
In the weighted case, as we will see in Chapter 3, it is not much harder to achieve
a ratio of 2.

Thus, it is perhaps surprising that after considerable efforts, the current best
approximation factor for Vertex Cover is 2 − o(1), given independently by
Halperin [39], and Karakostas [44]. In [25], Dinur and, Safra showed that it is
NP-hard to approximate to within a factor of 1.3606. In [46], Khot and Regev
showed that Vertex Cover is NP-hard to approximate within any constant
factor better than 2 assuming the Unique Games Conjecture (UGC).

This is evidence to suggest that G-Vertex Deletion problems might be
quite difficult. In the case of F -subgraph-free classes G, there is indeed a strong
hardness result by Guruswami and Lee [38]. They show that when F contains a
2-connected graph of size k, G-Vertex Deletion is NP-hard to approximate
within a factor of k − ε for any constant ε > 0 assuming the UGC.

In the case of F -minor-free classes G, if F does not contain a planar graph, we
know of no result that gives a constant factor approximation. On the other hand
if F does contain a planar graph, then all graphs of G have treewidth at most t, for
some constant t, and the recent breakthrough of Gupta, Lee, Li, Manurangsi, and
Wlodarczyk [36] gives an O(log t)-factor approximation algorithm for G-Vertex
Deletion, in the unweighted case. Actually, they show this for all hereditary
graph classes G with bounded treewidth. In the presence of weights, obtaining a
constant factor approximation algorithm is a challenging open problem.

Our goal for this work is to design new deterministic approximation algo-
rithms for G-Vertex Deletion with non-trivial approximation ratios, where
G is one of the hereditary graph classes listed above. The state of the art partly
motivates this: most of the previous work is concerned with monotone classes
(defined by forbidden subgraphs) or minor-closed classes (defined by forbidden
minors). To the best of our knowledge, hereditary classes (defined by forbid-
den induced subgraphs) were much less studied in the literature. Also, for these
classes it seems much more difficult to obtain non-trivial results. Here, we chose

16 1. INTRODUCTION

to study concrete hereditary classes that are defined by a small number of small
graphs.

The following four G-Vertex Deletion problems fit these criteria:

Problem 2 (Claw-Free Vertex Deletion, Claw-VD). Given weighted
graph (G,w) find a minimum weight subset of vertices X such that G − X is
Claw-free.

Problem 3 (Feedback Vertex Set problem in Tournaments,
FVST). Given tournament (T,w) find a minimum weight subset of vertices X
such that T −X is a transitive tournament.

Problem 4 (Cluster Vertex Deletion, CVD). Given weighted graph
(G,w) find a minimum weight subset of vertices X such that G−X is a cluster
graph.

Problem 5 (Split Vertex Deletion, SVD). Given weighted graph (G,w)
find a minimum weight subset of vertices X such that G−X is a split graph.

There has been previous work on these problems. We list here the latest
results for each of the four problems. A more complete review of the literature
is given in the corresponding chapter in Part 2 of this thesis.

The Claw-VD restricted to bipartite graphs has been studied by Kumar,
Mishra, Safina Devi and Saurabh in [50], where a 3-approximation algorithm is
given. The case of FVST has been settled in the randomized setting with the 2-
approximation algorithm of Lokshtanov, Misra, Mukherjee, Panolan, Philip and
Saurabh [54]. The best known deterministic algorithm has an approximation
ratio of 7/3 and is given by Mnich, Williams and Végh [56]. Fiorini, Joret, and
Schaudt give a 9/4-approximation algorithm for CVD [28]. A randomized (2+ε)-
approximation algorithm was given for SVD by Lokshtanov, Misra, Panolan,
Philip and Saurabh in [55].

These four problems all have approximation preserving reductions to Vertex
Cover, which implies that they are NP-hard to approximate with a factor better
than 2 assuming the UGC and P 6= NP . As it turns out they can all be posed
as instances of Ek-Vertex Cover. For some positive integer constant k, see
Fig. 1.2 for an illustration.

Problem 6 (Ek-Vertex Cover). Given a k-uniform hypergraph H with
weights on its vertices, find a minimum weight set of vertices X that meets all
of the edges of H.

Given a G-Vertex Deletion problem where G is the class of F -free graphs,
such that F is finite and each graph it contains has at most k vertices, we obtain
an equivalent Ek-Vertex Cover problem in the obvious way: for each induced
subgraph H of G that is isomorphic to some order-k graph in F , we create an
edge in H whose vertices are those of H. In case H has less than k vertices,
we use dummy vertices of large weight to ensure that the corresponding edge of
H has k vertices. There is an easy k-approximation algorithm for Ek-Vertex
Cover. Thus Ek-Vertex Cover is a baseline for the problems we study here.
Unfortunately, assuming UGC, it is hard to approximate Ek-Vertex Cover
within k − ε for any constant ε > 0. This result is due to Khot and Regev

1. INTRODUCTION 17

Figure 1.2. Comparing Vertex Cover to E3-Vertex
Cover. On the left we have a simple graph, and show a solution
to Vertex Cover in green. On the right we have a 3-uniform
hypergraph (ellipses represent edges) and show a solution to E3-
Vertex Cover in green.

[46]. Given a G-Vertex Deletion problem, with G defined by forbidden set
F containing no graphs with more than k vertices, we obtain a k-approximation
algorithm by converting it to an instance of Ek-Vertex Cover. Therefore
the non-trivial approximation factors for our G-Vertex Deletion problems
are to be within the interval [2, k). In order to achieve such a ratio we need
to descend from the general case of Ek-Vertex Cover and design algorithms
which can leverage problem-specific properties. In this work we employ two
different algorithm design techniques.

The first tool we use is Linear Programming (LP), a classic foundation for
designing approximation algorithms [51, 65, 67]. Typically the most natural or
naive formulation is not the one that yields the best results. Coming up with
clever formulations and analysis often requires deep insight into the problem. We
turn to Sherali-Adams for a black box method that strengthens LP relaxations
for us. On the other hand, it can be difficult to analyze the quality of these
strengthened linear programs.

The second tool we use is the local ratio method. It is roughly equivalent
to the well known primal-dual method. The local ratio method has given the
best known results in terms of the problems we study here [26, 28, 54]. The
power of this “lighter weight” method is its flexibility. Notice that if there are
vertices of zero weight, we can add them to a partial solution, and remove them
from the graph. The idea is to find an induced subgraph (location), and a local
weighting for this location, such that any optimal solution for this subgraph, and
weighting must include a “good” fraction of its total weight. We then subtract
the local weight function from the input weight function which produces at least
one new zero-weight vertex. We then proceed recursively. Thus if we can iden-
tify obstruction sets F ′ which can be used as locations without exceeding the
approximation ratio we want to achieve, we can assume the problem is restricted
to an intermediary graph class G ′ defined by forbidding F ′. In all of the problems
we apply this approach to, G ′ has useful structural and algorithmic properties
which make the problem easier to solve.

We obtain the following results which are our main contributions.

18 1. INTRODUCTION

• We give a 2-approximation algorithm for Cluster Vertex Deletion
[3]. This tight result matches the hardness lower bound.
• We obtain a new deterministic 7/3-approximation algorithm for Feed-

back Vertex Set in Tournaments [2]. This result is based on the
LP given by just one round of Sherali-Adams.
• We find a new, simpler deterministic (2 + ε)-approximation algorithm
for Split Vertex Deletion [26].
• We give a 3-approximation algorithm for Claw-Free Vertex Dele-

tion in triangle-free graphs. In the case of general graphs we prove that
it is UGC-hard to obtain an approximation ratio of 3− ε.

We conclude this introduction with an outline of the thesis.
In Part 1 we set the stage. We first give some preliminary definitions and

notation in Chapter 2. In Chapter 3 we introduce two generalized frameworks
for designing approximation algorithms for the problems we introduced here. We
give some lemmas and observations which apply to many problems and help us
later on.

Part 2 features the main new results contained in this work. We utilize
the general design techniques of Part 1 to attack our four G-Vertex Dele-
tion problems. The work in this part is based on several joint papers: [26]
which has been accepted to the European Conference on Combinatorics,
Graph Theory and Applications 2021, [3] which has appeared in the 21st
International Conference on Integer Programming and Combinatorial
Optimization, and [2] which is submitted.

In Part 3, we share some experimental results, which we found surprising
and illuminating but were unable to exploit theoretically. We then offer our
concluding remarks.

Problem Determinism Factor Run Time LP size
FVST Randomized 2 O(n34) [54]
FVST Deterministic 2 nO(lgn) [54]
FVST Deterministic 7/3 O(n7) [56]
FVST Deterministic 7/3 O(n4) Chapter 5
CVD Deterministic 9/4 O(n5) [28]
CVD Deterministic 2 O(n4) Chapter 6
SVD Randomized 2 + ε O(nf(ε)) [55]
SVD Deterministic 2 + ε O(ng(ε)) Chapter 7

Table 1. The current landscape of approximation factors, deter-
minism, and run time or LP size.

CHAPTER 2

Preliminaries

Here we introduce and define the basic concepts and notations used through-
out this work.

2.1. Sets and Weight functions

We adopt the usual notation from set theory. If S is a set, then 2S denotes
the set of all subsets of S. We use |S| for the cardinality of S. The symbol ∅
represents the empty set. We use the notation [n] := {1, 2, . . . , n} for finite sets.
We sometimes use the arithmetic operators to add or remove elements to a set,
and let A+ a := A∪{a}, A− a := A \ {a} for a set A and an element a. We use
R for the set of real numbers, Q for the set of rational numbers, Z for the set of
integers. If S ⊆ R we use the notation S≥0 := {s ∈ S | s ≥ 0} to denote the set
of its non-negative elements. In particular Q≥0 denotes the set of non-negative
rational numbers. As usual Rd denotes the d-dimensional Euclidean space.

Given a finite set V , we say function w is a weight function or equivalently
w ∈ QV

≥0 if w : V → Q≥0. We limit our weight functions to Q because we
use Turing machines as a computational model. We can assume that the vertex
weights are non-negative for all our problems since otherwise we can simply
include all negative weight vertices to a solution without penalty. If X ⊆ V ,
we define the indicator weight function of X as 1X(v) := 1 if v ∈ X, otherwise
1X(v) := 0.

2.2. Graphs

A (simple) graph G is pair of (finite) sets (V,E), where the elements of V
are called vertices and E is a set of unordered pairs of vertices called edges . A
directed graph D := (V,A) is defined analogously. Instead of edges, we have arcs ,
which are ordered pairs of vertices. Given a graph G we will sometimes use V (G),
and E(G) to denote the sets of vertices and edges respectively, and analogously
for directed graphs V (D), A(D). We say that vertices u, v ∈ V (G) are adjacent
in a graph G if uv ∈ E(G). We use G to denote the complement of graph G.
That is G := (V (G), E(G)) where E(G) := {{u, v} ⊆ V (G) | {u, v} /∈ E(G)}.

We will frequently discuss specific classes of subgraphs. It is helpful, and
common to have a concise notation for each. For a positive integer k, Pk denotes
the path on k vertices. We denote the cycle of length k by Ck. Two disjoint
edges with no adjacency between them will be referred to as 2K2, and similarly
two disjoint Pk’s with no edges between them will be called a 2Pk.

The set of vertices that some particular vertex is adjacent to is called its
neighborhood . We will need notation to precisely specify this set of neighbors.
If G is a graph and v ∈ V (G), we let N(v) := {u | vu ∈ E(G)} and N [v] :=

19

20 2. PRELIMINARIES

N(v) ∪ {v}. Hence, N(v) is the open neighborhood of v. The set N [v] is called
the closed neighborhood of vertex v.

Sometimes it is easier to show the existence of graphs satisfying certain prop-
erties by sampling from a set of randomly generated graphs rather than deter-
ministically finding an example. We will make use of the Erdős-Rényi random
graph model G(n, p). Here n is the number vertices of the graph and p is the edge
probability. Each pair of vertices uv appears in E(G) with independent prob-
ability p. The graph-valued random variable with these parameters is denoted
G(n, p).

Given a graph G, we say that a subset S of its vertices is a stable set if no two
vertices of S are adjacent. The stability number α(G), is the size of the largest
stable set in G. Similarly we say that a subset of vertices is a clique if every pair
of distinct vertices of K are adjacent in G. The clique number ω(G) is the size
of the largest clique in G.

A complete graph on r vertices is a graph such that every pair of vertices is
adjacent; we use Kr to denote such a graph. A tournament T is a directed graph
obtained by orienting a complete (undirected) graph.

Given a graph G and a vertex v, we use the notation δ(v) := {e ∈ E | v ∈ e}
for the set of edges incident to v.

Throughout this work we are concerned with weighted graphs . This is a graph
G together with a weight function w : V (G) → Q≥0. Often, a weighted graph
is denoted as the pair (G,w). The weight of a set of vertices X of a weighted
graph (G,w) is defined as w(X) :=

∑
v∈X w(v).

A subset of verticesX of a graph G naturally defines a subgraph of G, namely,
the subgraph of G induced by X. This is the graph G[X] with vertex set X and
edge set {e ∈ E(G) | e ⊆ X}.

2.3. Hypergraphs

A hypergraph H is a pair H := (V,E) where the elements of V are again
called vertices and E ⊆ 2V is a collection of non-empty subsets of V which we
call edges . A k-uniform hypergraph is a hypergraph H = (V,E) such that every
edge e ∈ E has size |e| = k.

If H = (V,E) is a hypergraph, and v ∈ V , then we define H − v := (V −
v, E \ {e ∈ E | v ∈ e}). If S ⊆ V then we extend this definition to H − S :=
(V \ S,E \ {e ∈ E | e ∩ S 6= ∅}).

We adapt the notation for graphs whenever its meaning is unambiguous on
hypergraphs.

2.4. Combinatorial Optimization

A polytope is the convex hull of finitely many points in Rn. If P = {x ∈
[0, 1]n | Ax ≥ b} is a polytope contained in the unit cube, SAk(P) denotes the
polytope obtained by running k rounds of the Sherali-Adams hierarchy on P .
This hierarchy will be defined in detail later in Chapter 3, Section 3.3.

A linear program (LP) models the problem of finding a vector x that mini-
mizes a linear weight function wx, where w is a row vector , and x ranges over all

2.4. COMBINATORIAL OPTIMIZATION 21

vectors which satisfy a given system Ax ≥ b. In other words if P := {x | Ax ≥ b},
then we want to find argminx∈P wx, which we often write as

min wx

s.t. Ax ≥ b.

The ellipsoid method is an iterative algorithm which can solve LPs in a num-
ber of steps which is polynomial in the input size [34]. This method is slow in
practice. On the other hand the simplex method designed by G.B. Dantzig in the
late 1940s works very well in practice. If an LP’s feasible region is a non-empty
polytope P then at least one extreme point of P is an optimal solution of the
LP [57]. The simplex method traverses the extreme points of P via geometric
“pivot operations”, which successively improve the quality of the solution, until
an optimal extreme point is found. Unfortunately it is unproven that the number
of extreme points traversed can be bounded by a polynomial in the dimension
of matrix A, for some pivot rule [20].

All the problems we study here can be seen as cases of Ek-Vertex Cover,
and as such can be modelled as integer programs . Given weighted k-uniform
hypergraph (H, w), we construct an integer program as follows:

(1) Introduce variable xv for each vertex v ∈ V (H).
(2) For each variable xv add the integrality constraint: xv ∈ {0, 1}.
(3) For each edge e ∈ E(H) we add a constraint forcing any feasible solution

to meet each edge:
∑

v∈e xv ≥ 1.
(4) The objective then is to minimize

∑
v∈V (H)w(v)xv.

We present this integer program, which we denote as :

IPHVC min
∑
v∈V

w(v)xv

s.t.
∑
v∈e

xv ≥ 1 e ∈ E(H)

xv ∈ {0, 1} v ∈ V (H).

We can relax the integrality constraints of IPHVC by replacing xv ∈ {0, 1}
constraints with xv ∈ [0, 1] constraints. Relaxing integrality constraints is a
natural idea to obtain a linear program contained in the unit cube which we
denote LPHVC. We call this relaxation the basic linear programming relaxation.

Given an instance of Ek-Vertex Cover (H, w), let OPT(H, w) be the
weight of an optimal solution with respect to weight function w. For the rest
of this section we assume H is fixed. Let d ∈ Z>0 be an arbitrary dimension.
A system of linear inequalities Ax > b in Rd defines an LP relaxation of Ek-
Vertex Cover on H if the following hold: (i) For every vertex cover X ⊆
V (H), we have a point πX ∈ Rd satisfying AπX > b; (ii) For every weight
function w : V (H) → Q>0, we have an affine function fw : Rd → R; (iii) For all
vertex covers X ⊆ V (H) and weight functions w : V (H) → Q>0, the condition
fw(πX) = w(X) holds. The size of the LP relaxation Ax > b is defined as the
number of rows of A. This formalism allows for extended formulations. For

22 2. PRELIMINARIES

example we can use the Sherali-Adams hierarchy to obtain an LP strengthening
of the basic relaxation.

For every weight function w, the quantity LP(H, w) := min{fw(x) | Ax > b}
gives a lower bound on OPT(H,w). The integrality gap of the LP relaxation
Ax > b is defined as sup{OPT(H, w)/LP(H, w) | w ∈ QV (H)

>0 }. Note that the
integrality gap is at least 1.

2.5. Algorithms

Later on, we will need to analyze the performance of algorithms. As far as
run-time is concerned we use the standard asymptotic notation. See for example
[21, Chapter 3]. We say a function f is O(g(n)) and write f(n) = O(g(n)) if
there exists some positive real constant c, integer constant n0 and function g
such that |f(n)| ≤ cg(n) for all n ≥ n0.

CHAPTER 3

Tools and Techniques

In this work we employ two different algorithmic frameworks for attacking
various Ek-Vertex Cover problems. In this chapter we briefly introduce them
and explain the ways in which we have adapted them for our purposes.

3.1. Local Ratio Lemma

The local ratio method is a simple and elegant paradigm for weighted NP-
hard problems [4]. It is based on the simple yet surprisingly deep Local Ratio
Lemma which we now state.

Lemma 3.1 (adapted from [4]). Let (H, w) be a weighted hypergraph. For i ∈ [2],
let wi : V (H) → Q+ be a weight function. Suppose that w = w1 + w2 and that
X ⊆ V (H) is a vertex cover of H such that wi(X) ≤ αOPT(H, wi) for each
i ∈ [2], where α ≥ 1. Then w(X) ≤ αOPT(H, w).

Proof. For i ∈ [2], let Xi ⊆ V (H) be a vertex cover of H that has minimum
weight with respect to wi, and let X∗ be an optimal solution with respect to w.
We have

w(X) = w1(X) + w2(X)

≤ αOPT(H, w1) + αOPT(H, w2)

= αw1(X1) + αw2(X2)

≤ αw1(X
∗) + αw2(X

∗)

= αw(X∗) .

�

We demonstrate how to use the Local Ratio Lemma to decompose a weight
function for CVD on a small graph in Figure 3.1. Next, we show how the Local

2 2

22

0

0
+

w1(X) ≤ 2OPT(G,w1)

5 0

10

1

4
=

w2(X) ≤ 2OPT(G,w2)

7 2

32

1

4

w(X)≤ 2OPT(G,w)

Figure 3.1. For CVD on the graph to the right we need to hit
all induced P3’s. A feasible solution X is shown in red. We find
weight functions w1, w2 such that w1 + w2 = w, and i ∈ [2],
wi(X) ≤ 2 OPT(G,wi). For each weight function wi an opti-
mal solution is shown in yellow. By the Local Ratio Lemma
w(X) ≤ 2 OPT(G,w).

23

24 3. TOOLS AND TECHNIQUES

Ratio Lemma (Lemma 3.1) can be used to obtain an k-approximation algorithm
for Ek-Vertex Cover.

Lemma 3.2. Let H be any k-uniform hypergraph, and let e ∈ E(H) be any
edge. For v ∈ V (H), let w1 := 1e. Then w1(X) ≤ kOPT(H, w1) for every
vertex subset X.

Proof. Notice that OPT(H, w1) ≥ 1 since every vertex cover of H must
contain some vertex of e. Trivially, w1(X) ≤

∑
v∈ew1(v) = k. It follows that

w1(X) ≤ kOPT(H, w1). �

This gives a k-approximation algorithm for Ek-Vertex Cover, see Algo-
rithm 11.

Algorithm 1 LocalRatio-HVC(H, w)

Input: a weighted hypergraph (H, w)
Output: a vertex cover X of H
1: if H has no edge then
2: X ← ∅
3: else if there is some v ∈ V (H) with w(v) = 0 then
4: H′ ← H− v
5: w′ ← w restricted to V (H′)
6: X ′ ← LocalRatio-HVC(H′, w′)
7: X ← X ′ if H−X ′ has no edges; X ← X ′ ∪ {v} otherwise
8: else
9: pick any e ∈ E(H)

10: w1 ← 1e
11: λ∗ ← argmax{λ ∈ R≥0 | ∀u ∈ V (H) : w(u)− λw1(u) ≥ 0}
12: w2 ← w − λ∗w1

13: X ← LocalRatio-HVC(H, w2)
14: end if
15: return X

Lemma 3.3. LocalRatio-HVC(H, w) returns an inclusion-wise minimal ver-
tex cover X such that w(X) ≤ kOPT(H, w).

Proof. We proceed by induction on m := |V (H)| + | supp(w)|, where
supp(w) := {v ∈ V (H) | w(v) > 0}. If m = 0 there is nothing to prove.

Now suppose that m > 0, and assume that LocalRatio-HVC(H′, w′)
correctly returns an inclusion-wise minimal vertex cover X ′ with w′(X ′) ≤
kOPT(H′, w′) whenever |V (H′)|+ | supp(w′)| < m.

If line 2 is executed then H has no edges and ∅ is correctly returned.
Next, assume that lines 4 through 7 are executed. That is, there is some

vertex v ∈ V (H) such that w(v) = 0. Then the vertex cover X returned by Al-
gorithm 1 is inclusion-wise minimal. Indeed, by induction X ′ is an inclusion-wise
minimal vertex cover for H′. If X ′ is a vertex cover for H then it is also clearly
inclusion-wise minimal. If it is not a vertex cover for H then X ′ ∪ {v} is, and is

1recall H− v := (V − v,E \ {e ∈ E | v ∈ e})

3.2. GOOD SUBGRAPHS 25

inclusion-wise minimal. Moreover, we have w(X) = w(X ′) ≤ kOPT(H′, w′) =
kOPT(H, w) since w(v) = 0.

Finally, assume that lines 9-13 is executed. Then by Lemma 3.2, w1(X) ≤
kOPT(H, w1). By construction | supp(w2)| < | supp(w)|, therefore by the induc-
tion hypothesis X := LocalRatio-HVC(H, w2) is an inclusion-wise minimal
vertex cover of H such that w2(X) ≤ kOPT(H, w2). Since w1 + w2 = w, the
Local Ratio Lemma applies, and w(X) ≤ kOPT(H, w). �

Algorithm 1 is of similar form as all of the local ratio based algorithms con-
tributed in this work. Generally speaking, the main step that changes is lines
9–10.

Suppose, for some factor 1 < α < k that we will always have some, as of yet
unspecified, way of finding a weight function w1 such that for any inclusion-wise
minimal vertex cover X, w1(X) ≤ αOPT(H, w1). We could then adapt Algo-
rithm 1 at lines 9–10, and the proof of Lemma 3.3 would give an α-approximation
algorithm. In the next section we give some definitions which will help us to find
such weight functions.

3.2. Good Subgraphs

Consider some G-Vertex Deletion problem where G is an F -free heredi-
tary graph class. Given a weighted graph (G,w), we can look for induced sub-
graphs on which there exists a weighting such that any solution must include a
large fraction of the total weight. These help define local weight functions for
use in the Local Ratio Method, following the form of Algorithm 1. We now state
things more precisely and give formal definitions.

Let H be an induced subgraph of G, and let wH : V (H)→ Q>0 be a weight
function on H. The weighted graph (H,wH) is said to be α-good in G (for some
factor α > 1) if wH is not identically 0 and

(1)
∑

v∈X∩V (H)

wH(v) 6 α ·OPT(H,wH)

holds for every inclusion-wise minimal solution X of G.
We will use two methods to establish α-goodness of weighted induced sub-

graphs. We say that (H,wH) is strongly α-good if wH is not identically 0 and∑
v∈V (H)

wH(v) 6 α ·OPT(H,wH) .

Clearly if (H,wH) is strongly α-good then it is also α-good. We slightly abuse
terminology and allow ourselves to say that an induced subgraph H is α-good in
G(resp. strongly α-good) if there exists a weight function wH such that (H,wH) is
α-good (resp. strongly α-good) in G. Similarly we say that the weight function
wH is α-good (resp. strongly α-good). It is important to note that the local
weight function wH is not necessarily the restriction of the global weight function
w : V (G)→ Q>0 to V (H).

The identification of good subgraphs forms a key component in the design
of many of the approximation algorithms we study here. The idea is to use
an α-good subgraph in place of an edge in Algorithm 1 towards achieving an

26 3. TOOLS AND TECHNIQUES

α-approximation factor, where α ∈ [2, k). Given an instance of G-Vertex
Deletion, (G,w), let F ′ be an obstruction set of α-good subgraphs, and G ′
the graph class defined by forbidding F ′. While G contains an induced subgraph
that is contained in F ′, we can perform the steps from Algorithm 1 to recursively
reduce the problem. Therefore, to obtain an α-approximation algorithm for G-
Vertex Deletion, we may assume that our input graph is in G ′. Often G ′
has algorithmically useful properties which make this sub-problem easier. We
now give examples of good subgraphs from Vertex Cover, CVD, SVD, and
Claw-VD.

We start with the most simple case of classical Vertex Cover. Let (G,w)
be a weighted graph. Take any edge e ∈ E(G), then (G[e],1e) is a strongly 2-
good subgraph since OPT(G[e],1e) = 1, and 1e(e) = 2. Next suppose G contains
some edge e′ = uv where deg(u) = 1. OPT(G[e′],1e′) = 1 = OPT(G,1e′). So e′
is 1-good, since any minimal inclusion-wise vertex cover contains either u or v but
not both. Note that e′ is not strongly 1-good since 1e′(e

′) = 2. See Figure 3.2.

1 1

11

1

Figure 3.2. A 1-good but not strongly 1-good induced subgraph
forVertex Cover.

In the case of CVD, recall that a solution needs to cover every induced P3.
Let wC4 := 1C4 , and observe that (C4, wC4) is strongly 2-good since wC4(C4) =
4 = 2 OPT(C4, wC4). On the other hand, let v be a degree 1 vertex and vab an
induced P3. This gives an example of a 2-good subgraph which is not strongly
2-good. Let H := vab, wH := 1vab. Then (H,wH) is 2-good since any inclusion-
wise minimal solution X includes at most 2 vertices from induced path vab. See
Figure 3.3.

1 1

11
1

v a b

1 1

Figure 3.3. A solution to CVD must meet each induced P3. The
unit weighted C4 on the left is strongly 2-good. On the right vab is
P3 in a larger graph such that grey vertex v has degree-1. Therefore
vab is 2-good but not strongly 2-good.

In Claw-VD a solution needs to cover all induced claws (K1,3). Consider a
K1,4 with vertex set {v, a, b, c, d}, and edge set {va, vb, vc, vd}. We claim that
K1,4 is strongly 3-good. Set w(v) := 2, and w(a) := w(b) := w(w) := w(d) := 1.
Then the total weight is w({v, a, b, c, d}) = 6, and any solution X must have
w(X) ≥ 2, either by choosing v or two other vertices for a ratio of 6/2 = 3. See
Figure 3.4.

3.2. GOOD SUBGRAPHS 27

1 1 1

2

1

Figure 3.4. K1,4 is strongly 3-good for Claw-VD.

For our final example we consider SVD. Recall that a solution X to SVD
on weighted graph (G,w) is a subset of vertices X ⊆ V (G) such that V (G−X)
can be partitioned into disjoint sets S,K such that S ∪K = V (G−X), with S
a stable set, and K a clique.

Let k > 5, set wPk := 1Pk . We will show that (Pk, wPk) is 2k
k−4 -good. The

largest clique in Pk is of size 2, an edge uv, which, assuming k is even, can
be chosen to separate Pk into two odd paths. In each odd path we can ignore
one vertex, but then must pick half of the remaining vertices to include in the
solution. Let these ignored vertices be a, b. Then any solution must include half
of the remaining vertices from V (Pk) − {u, v, a, b} of which there are k−4

2
. If k

is odd then after selecting the clique, only one of the remaining paths will be of
odd length, and any solution must include k−3

2
vertices. See Figure 3.5. Thus

|V (Pk)|/OPT(Pk, wPk) ≤ 2k
k−4 .

We end this chapter by giving a general recipe for an α-approximation algo-
rithm on G-Vertex Deletion problems on input (G,w).

Algorithm 2 LocalRatio-HVD(G,w)

Input: a weighted graph (G,w).
Output: a hitting set X for G.
1: if G ∈ G then
2: X ← ∅
3: else if there is some v ∈ V (G) with w(v) = 0 then
4: G′ ← G− v
5: w′ ← w restricted to V (G′)
6: X ′ ← LocalRatio-HVD(G′, w′)
7: X ← X ′ if G−X ′ ∈ G; X ← X ′ ∪ {v} otherwise
8: else if G contains an α-good subgraph (H,wH) then
9: λ∗ ← argmax{λ ∈ R≥0 | ∀u ∈ V (G) : w(u)− λwH(u) ≥ 0}

10: w2 ← w − λ∗wH
11: X ← LocalRatio-HVD(G,w2)
12: else
13: X ← RestrictedInputSubroutine(G,w)
14: end if
15: return X

The subroutine RestrictedInputSubroutine(G,w) is a placeholder for
some α-approximation algorithm which only takes, as input, weighted graphs
belonging to intermediary graph class G ′ defined by forbidding F ′, which contains
α-good subgraphs.

28 3. TOOLS AND TECHNIQUES

1 1 1 1 1 1 1 1

Figure 3.5. A solution for SVD splits the vertices not in the
hitting set into a clique and a stable set. Set H := P8, wH := 1P8 ,
then (H,wH) is strongly 4-good. wH(V (H)) = 8. OPT(H,wH) =
2. The clique is shown in green, and an optimal solution is shown
in red.

Lemma 3.4. Given an obstruction set of α-good subgraphs F ′, and α-
approximation algorithm RestrictedInputSubroutine(G′, w′) defined on
F ′-free graphs, LocalRatio-HVD(G,w) returns an inclusion-wise minimal hit-
ting set X such that w(X) ≤ αOPT(H, w).

Proof. The proof is the essentially same as that of Lemma 3.3, with the
recursion terminating either when G is F -free or at line 13 when G is F ′-free,
and an α-approximate solution is returned by the restricted input subroutine.

�

3.3. POLYHEDRAL TOOLS 29

3.3. Polyhedral Tools

We showed in Chapter 2, Section 2.4 how to model Ek-Vertex Cover as
an integer program. Here we explain how to apply the technique of iterative
rounding to this formulation. We will augment the standard iterative rounding
technique by using stronger relaxations obtained from Sherali-Adams hierarchy
[60] which we formally define.

Rounding. Let (H, w) be a weighted k-uniform hypergraph. Recall the
integer programming formulation for its minimum vertex cover is IPHVC (see
page 21).

An optimal solution to this IP clearly solves Ek-Vertex Cover but unfor-
tunately there is no known way for solving it for all instances in polynomial time.
On the other hand we can solve linear programs in time polynomial of the input
size [34]. We can relax the integrality requirement for our variables and obtain
the basic linear relaxation:

LPHVC min
∑
v∈V

w(v)xv

s.t.
∑
v∈e

xv ≥ 1 e ∈ E(H)

xv ∈ [0, 1] v ∈ V (H).

We can solve LPHVC and obtain an optimal yet potentially fractional solution
x∗ to LPHVC. Since the feasible region of IPHVC is contained within LPHVC, the
objective optimal value of LPHVC is a useful lower bound on the optimal integral
solution, LPHVC(H, w) ≤ IPHVC(H, w).

For each edge e ∈ E(H) we have
∑

v∈e x
∗
v ≥ 1. Consider X := {v | x∗v ≥ 1

k
}.

X is a feasible solution to Ek-Vertex Cover since X meets each edge at least
once. Moreover, X is a k-approximation since w(X) ≤ kwx∗ = k LPHVC(H, w) ≤
kIPHVC(H, w) = kOPT(H, w).

This basic technique of LP rounding works here since each edge must have a
vertex with x∗v ≥ 1

k
. However, for α < k we can not assume in general that each

edge contains some x∗v ≥ 1
α
. Fortunately, if we can show the weaker condition

that there must exist some v ∈ V (H) such that x∗v ≥ 1
α
, then, although this is

not enough to build a complete solution outright, we can at least take action to
reduce the size of the problem. We add v to our partial solution, remove v from
H and iterate this process by finding a new solution to LPHVC(H− v, wH−v) and
continuing, where wH−v is the restriction of w to V (H−v). This is the process of
iterative rounding [43, 51]. At each iteration i with input (Hi, wi), where wi is w
restricted to V (Hi), we take an optimal solution xi of LPHVC(Hi, wi), round all
components with xiv ≥ 1

α
, add the corresponding vertices to our partial solution

Xi+1 := Xi ∪ Ri+1 where Ri+1 := {v ∈ V (Hi) | xiv ≥ 1
α
}, remove them from the

hypergraph Hi+1 := Hi − Ri+1 obtaining (Hi+1, wi+1). We iterate this process
until there are no more components to round at iteration l. If Xl is a feasible
solution to the instance (H0, w0) := (H, w), then we can show that X := Xl is
an α approximate solution.

30 3. TOOLS AND TECHNIQUES

Suppose that the process terminates after l iterations beginning with X0 :=
∅. We proceed by induction on l. If l = 0, then clearly E(H) = ∅ and there is
nothing to show. We assume for induction that when 0 ≤ i < l, if Xi is returned
as a feasible solution for some initial input (H′, w′) then w′(Xi) ≤ αOPT(H′, w′).
Let L := X1 be the vertices added when called on input (H, w) in the first
iteration. If Xl is a feasible solution for H then Xl − L must be feasible for
H − L and is found in l − 1 iterations. Let x := x0 be an optimal solution to
LPHVC(H, w). By induction, and since the restriction of x to V (H−L) is feasible
for LPHVC(H− L,w1) we have

w(Xl − L) ≤ αLPHVC(H− L,w1)(1)

≤ αLPHVC(H, w)− α
∑
v∈L

w(v)xv.(2)

By the choice of L, w(L) ≤ α
∑

v∈Lw(v)xv, and w(Xl) ≤ αOPT(H, w) as
required.

We need not use the basic relaxation for the LP used in this process. We
can choose a stronger relaxation, and then weaken it in successive iterations.
A stronger relaxation makes it easier to find components to round, whereas a
weaker relaxation is simpler, and therefore easier to analyse. Again let (H, w)
be an instance of Ek-Vertex Cover, and suppose LP1(H) ⊆ LPHVC(H). Note
that inequalities (1), (2) remain valid if x is an optimal solution of LP1(H, w)
rather than LPHVC(H, w).

Towards this goal we introduce the Sherali-Adams hierarchy of extended for-
mulations. This will allow us to iteratively strengthen the basic LP relaxation.

Sherali-Adams Hierarchy. Let P = {x ∈ Rn | Ax ≥ b} be a polytope
contained in [0, 1]n and PI := conv(P ∩ Zn). Numerous optimization problems
can be formulated as minimizing a linear function over PI , where P has only a
polynomial number of constraints. For example, letH be a 3-uniform hypergraph
and w : V (H)→ Q≥0. Then OPT(H, w) is simply the minimum of wx over PI ,
where P = P (H) is the basic relaxation defined above.

The Sherali-Adams hierarchy [60] is a simple but powerful method to obtain
improved approximations for PI . Since it does not require any knowledge of the
structure of PI , it is widely applicable. The procedure comes with a parameter
r, which specifies the accuracy of the approximation. That is, for each r ∈ N,
we define a polytope SAr(P). These polytopes satisfy P = SA0(P) ⊇ SA1(P) ⊇
· · · ⊇ SAr(P) ⊇ · · · ⊇ PI .

An important property of the procedure is that if P is described by a polyno-
mial number of constraints and r is a constant, then SAr(P) is also described by
a polynomial number of constraints (in a higher dimensional space). Therefore,
for NP-hard optimization problems (such as those we study here), one should
not expect that SAr(P) = PI for some constant r. However, as we will see,
good approximations of PI can be extremely useful if we want to approximately
optimize over PI .

Here is a formal description of the Sherali-Adams hierarchy. Let P = {x ∈
Rn | Ax ≥ b} ⊆ [0, 1]n and r ∈ N. Let Nr be the nonlinear system obtained from
P by multiplying each constraint by

∏
i∈I xi

∏
j∈J(1− xj) for all disjoint subsets

3.4. DIAGONALS IN E3-Vertex Cover 31

I, J of [n] such that 1 ≤ |I| + |J | ≤ r. Note that if xi ∈ {0, 1}, then x2i = xi.
Therefore, we can obtain a linear system Lr from Nr by setting x2i := xi for all
i ∈ [n] and then xI :=

∏
i∈I xi for all I ⊆ [n] with |I| ≥ 2. We then let SAr(P) be

the projection of Lr onto the variables xi, i ∈ [n]. We let SAr(H) := SAr(P (H)),
where P (H) is the basic relaxation.

Let (G,w) be an instance of G-Vertex Deletion, (H, w) be the corre-
sponding instance of Ek-Vertex Cover, and x ∈ SAr(H, w) for some r ≥ 0.
Suppose for a given α > 0 that F ′ is a a family of induced subgraphs, such that
if F ∈ F ′ and F ⊆ G, then there is some v ∈ V (G) such that xv ≥ 1

α
. Then F ′

defines an intermediary graph class G ′ since we can apply an iterative rounding
step as long as G /∈ G ′. In the next section we give a useful example of F ′ in
E3-Vertex Cover problems.

3.4. Diagonals in E3-Vertex Cover

In FVST, and CVD we make use of the inequalities defining SA1(H), which
we now describe.

Theorem 3.5. Let (H, w) be an instance of E3-Vertex Cover. For
{a, b, c} ∈ E(H) and d ∈ V (H)− {a, b, c}, SA1(H) contains the inequalities:

xa + xb + xc ≥ 1 + xab + xbc ,(1)
xda + xdb + xdc ≥ xd and(2)

xa + xb + xc + xd ≥ 1 + xad + xbd + xcd .(3)

In addition, there are the inequalities for all distinct a, b ∈ V (H).

(4) 1 ≥ xa ≥ xab ≥ 0

Proof. We first show (2). Recall that SA0(H) = LPHVC(H), which contains
xa + xb + xc ≥ 1. Therefore xd(xa + xb + xc ≥ 1) is equivalent to xdxa + xdxb +
xdxc ≥ xd which linearizes to xda + xdb + xdc ≥ xd is an inequality of SA1(H).

To show inequality (1), note that (1 − xa)(xa + xb + xc ≥
1) is equivalent to xa + xb + xc ≥ 1 + xab + xac.

Similarly we obtain inequality (3) since (1 − xd)(xa + xb + xc ≥
1) is equivalent to xa + xb + xc ≥ 1 + xda + xdb + xdc.

Finally xa(1 ≥ xb ≥ 0) gives xa ≥ xab ≥ 0, and since 1 ≥ xa is a constraint
of SA0(H) inequality (4) follows. �

Let
(
V (H)

2

)
be the set of all unordered pairs of vertices of H. The polytope

SA1(H) is the set of all (xa)a∈V (H) ∈ RV (H) such that there exists (xab)ab∈E2(H) ∈
R(V (H)

2) so that inequalities (1)–(4) are satisfied.
Let (H, w) be an instance of E3-Vertex Cover, with basic linear relaxation

LP(H). We are able to give a combinatorial interpretation of some common
combinations of constraints of SA1(LP(H)) which guarantee a lower bound on
some component. This can allow us to design rounding algorithms keeping a
general hypergraph formulation of the problems.

An (unordered) pair of vertices ab is a diagonal if there are vertices u, v such
that {u, v, a} ∈ E(H) and {u, v, b} ∈ E(H). We often will denote a hyperedge
{a, b, c} as abc. We say that an edge contains a diagonal if at least one of its

32 3. TOOLS AND TECHNIQUES

pairs of vertices is a diagonal, and a hyperedge is heavy if it contains at least two
diagonals. A 3-uniform hypergraph H is heavy if at least one of its hyperedges
is heavy. If a 3-uniform hypergraph is not heavy, we say that it is light .

We now give two lemmas which will be useful in both CVD and FVST.

Lemma 3.6. Let H be a 3-uniform hypergraph and x ∈ SA1(H). If xv < 3/7 for
all v ∈ V (H), then H is light.

Proof. First, let ab be a diagonal of H. We claim that xab ≥ 1/7. Indeed,
since ab is a diagonal there must be u, v ∈ V (H) with uva, uvb ∈ E(T). We
apply the inequalities of Theorem 3.5. From (1), xa + xu + xv ≥ 1 + xau + xav
and from (2), xab + xau + xav ≥ xa. Adding these two inequalities, we obtain
xu + xv + xab ≥ 1, implying our claim.

Now, suppose by contradiction that H is heavy. Hence there exists abc ∈
E(H) such that ab and bc are diagonals. By (1), we have xa+xb+xc ≥ 1+xab+xbc.
By the above claim, xab ≥ 1/7 and xbc ≥ 1/7, making the right hand side at
least 9/7. So max(xa, xb, xw) ≥ 3/7, a contradiction. �

Similarly we have the weaker result:

Lemma 3.7. Let H be a 3-uniform hypergraph and x ∈ SA1(H). If xv < 2/5 for
all v ∈ V (H), then no edge of H contains a diagonal.

Proof. As in the previous proof, let ab be a diagonal of H. We claim
that xab ≥ 1/5. Indeed, since ab is a diagonal there must be u, v ∈ V (T)
with uva, uvb ∈ E(H). From (1), xa + xu + xv ≥ 1 + xau + xav and from (2),
xab +xau +xav ≥ xa. Adding these two inequalities, we obtain xu +xv +xab ≥ 1,
implying our claim.

Now, suppose by contradiction that H has a hyperedge with a diagonal.
Hence there exists abc ∈ E(H) such that ab is a diagonal. By (1), we have
xa + xb + xc ≥ 1 + xab + xbc. By the above claim, xab ≥ 1/5 and xbc ≥ 0 making
the right hand side at least 6/5. So max(xa, xb, xw) ≥ 2/5, a contradiction. �

a b

d

c

u

c

a

b

d

u

Figure 3.6. In both CVD (left) and FVST (right), abc, abd ∈
E(H), so c, d are diagonals. Also cdu ∈ E(H). By Lemma 3.7,
max(xa, xb, xc, xd, xu) ≥ 2

5
.

If Lemma 3.7 is not applicable for an E3-Vertex Cover instance, it means
that the underlying excludes certain small induced subgraphs. See Figure 3.6.

Part 2

The Main Results

We now use the tools we have described in Part 1 to develop non-trivial
approximation algorithms for Claw-VD, FVST, CVD, and SVD.

CHAPTER 4

Claw Vertex Deletion

This chapter is not based on a published work. It is the fruit of collaboration
with Samuel Fiorini and Tony Huynh.

4.1. Background

Given a weighted graph (G,w), recall that a claw is an inducedK1,3 subgraph.
Given a claw K we call the vertex of degree 3 in K the center of K. We denote
the set of all claws of G as Claw(G). Claw-VD asks to find the smallest weight
subset X ⊆ V (G) such that G−X is claw-free.

Lewis and Yannakakis showed that this problem is NP-hard even when G is
bipartite [52]. Kumar, Mishra, Safina-Devi, and Saurabh give a 3-approximation
algorithm for this bipartite case [50]. We will show that the Local Ratio based
approach of Algorithm 2 matches this approximation ratio on the broader class
of triangle-free graphs. In terms of the notation from Chapter 1, we give a
3-approximation algorithm for G-Vertex Deletion on graph class G defined
by forbidding F = {K1,3, K3}. We then show that, under UGC, it is hard to
approximate the problem on general graphs better than a factor of 3.

4.2. Good Subgraphs

To employ the local ratio technique of Section 3.2 we must identify a good
subgraph. We see from Figure 3.4 and the discussion in Section 3.2 that K1,4

is strongly 3-good. We have seen in Section 3.1 that Algorithm 2 then gives a
local ratio 3-approximation algorithm for vertex deletion to K1,4-free graphs. By
Lemma 3.4, what is left is to define a 3-approximation subroutine which takes
as input graphs belonging to intermediary graph class G ′ defined by forbidding
F ′ = {K1,4, K3}. Fortunately this turns out to be another easy application of
local ratio.

If G ∈ G ′ then by definition it is triangle-free and contains no induced K1,4.
Since G contains no K3, for all v ∈ V (G), N(v) must be an independent set.
Since G contains no K1,4 it follows that deg(v) ≤ 3 for all v ∈ V (G). We now
show that any induced K1,3 subgraph of G ∈ G ′ is 3-good.

Lemma 4.1. Let G ∈ G ′ be a weighted {K1,4, K3}-free graph. If K ⊆ G is an
induced K1,3(claw) and X is any inclusion-wise minimal solution, |X ∩K| ≤ 3.

Proof. Suppose by way of contradiction that |X∩K| = 4. This must mean,
by minimality of X, that each vertex of K appears in some other claw as well.
In particular this means that the center of K, which we label v, must be in some
induced claw K ′ with V (K)∩ V (K ′) = {v}. Hence, v must be adjacent to some

35

36 4. CLAW VERTEX DELETION

vertex v′ ∈ V (K ′) \ V (K). But this means deg(v) > 3, implying that either G
contains an induced K1,4 or a triangle, a contradiction. �

These observations immediately plug into the generalized local ratio method
we developed for the G-Vertex Deletion in Chapter 3, see Algorithm 2. The
algorithm first iteratively removes all K1,4’s until it either returns a solution or
the remaining graph G′ ∈ G ′. In the later case, we have by Lemma 4.1 that each
claw is 3-good. Therefore we can in fact use Algorithm 1 to define the subroutine
on line 13.

Theorem 4.2. There is a 3-approximation algorithm for Claw-VD on
weighted triangle-free graphs.

Since the local ratio based approach gave this result so easily, we considered
if an LP rounding approach could also work.

4.3. A Rounding Attempt

Observe that the degree-1 vertices in a K1,4 are all diagonals by virtue of
the K1,3’s they intersect. Thus if we take x ∈ SA1(K1,4) we can follow the
technique used in Lemma 3.7 to derive the inequalities to show that x contains a
component xv ≥ 7/24. This suggests that there might be an iterative rounding
24/7-approximation algorithm over SA1(G). However it is unclear what to do
when G no longer contains a K1,4. Thus we ask the open problem:

Question 1. If (G,w) is triangle-free, and contains no induced K1,4, what
is the integrality gap of the basic linear programming relaxation LPCFVD(G,w)?

4.4. Hardness Result

In this section we will show that it is UGC-hard to approximate Claw-
VD in general graphs better than within a factor of 3. We will do so with an
approximation preserving reduction to the following problem.

Problem 7 (K3 Hitting Set). Given weighted graph (G,w) find a mini-
mum weight set X such that G−X contains no K3.

Guruswami and Lee [37] showed that it is UGC-hard to approximate K3

Hitting Set better than a factor of 3.

Theorem 4.3. There is an approximation preserving reduction from K3

Hitting Set to Claw-VD.

Proof. Let (G,w) be a weighted graph, and we let OPTK3(G,w) be the
weight of an optimal solution forK3 hitting set. Similarly let OPTCFV D(G,w)
be the weight of an optimal solution for Claw-VD.

Given instance (G,w) of K3 hitting set, we obtain an instance for Claw-
VD as follows. Construct a new graph G′ from the complement G by adding a
new vertex v as an apex vertex. That is, define G′ by letting V (G′) := V (G) ∪
{v} = V (G) ∪ {v} and E(G′) := E(G) ∪ {vu : u ∈ V (G)}. Next define w′(u) :=
w(u), u ∈ V (G), and for the apex w′(v) := w(V (G)) + 1, giving v more than the
total weight of all of the rest of the vertices.

4.5. CONCLUDING REMARKS 37

2 2

31

2 2

31

9

Figure 4.1. The approximation preserving reduction from K3

hitting set to Claw-VD. On left is the K3 hitting set instance
G,w. On the right we take the complement and add green apex
with more than the total weight G′, w′.

Now let X be an optimal solution for K3 hitting set on input (G,w).
That means w(X) = OPTK3(G,w) and G − X is triangle-free. Note that any
independent set {a, b, c} of size 3 in G forms a claw with v in G′, and a K3 in
G. Thus G′−X contains no independent set of size 3 and is therefore a feasible
solution for Claw-VD. This shows that OPTCFV D(G′, w′) ≤ OPTK3(G,w).

Next let X ′ be an optimal solution to Claw-VD on input (G′, w′). Notice
that by the choice of w′(v), that v /∈ X ′. But v forms a claw with any independent
set of size 3 and so G′ − X ′ has no independent set of size 3 which means
that G − X ′ has no triangles. So we have shown that OPTCFV D(G′, w′) =
OPTK3(G,w), and that for every feasible solution X ′ to Claw-VD on (G′, w′)
we can obtain a solution X in polynomial time for K3 Hitting Set on (G,w)
such that w(X) ≤ w′(X ′).

Since the construction of G′ also takes polynomial time, we have an approx-
imation preserving reduction from K3 Hitting Set to Claw-VD. �

Corollary 4.4. It is UGC-hard to approximate Claw-VD better than a factor
of 3.

4.5. Concluding Remarks

We have shown that the Claw-VD in general graphs is UGC-hard to ap-
proximate better than 3. The local ratio method gave an easy way to achieve
this when we restrict the input to triangle free graphs. We ask:

Question 2. Is there a 3-approximation algorithm for Claw-VD?

This short chapter illustrates the immediate effectiveness of the good-
subgraph local ratio framework developed in Chapter 3. Interestingly F ′ =
{K1,4} is the basis of our local ratio approach, and also seems to be useful from
the perspective of rounding SA1. See Section 4.3.

CHAPTER 5

Feedback Vertex Problem in Tournaments

This chapter is based on the paper [2], in which Aprile, Drescher, Fiorini, and
Huynh develop a new 7/3-approximation algorithm based on SA1 (see Section 3.3
in Chapter 3, Part 1).

The result matches the best deterministic approximation algorithm for FVST
due to Mnich, Williams, and Végh [56], and is a significant simplification of their
approach.

We gave a brief history of the FVST problem in Chapter 1. In Section 5.2
we use diagonals from Section 3.4 in Chapter 3, Part 1 to develop an iterative
rounding procedure. We classify every tournament as either light or heavy, and
derive some structural properties of light tournaments. These light tournaments
serve as an intermediary class from which we stop iterating and solve the re-
maining problem directly via a restricted input 7/3-approximation algorithm. In
Section 5.3, we describe this restricted input subroutine which utilizes breadth
first search layering. Finally, in Section 5.4, we state our 7/3-approximation
algorithm in full and prove its correctness, see Algorithm 3 .

5.1. Overview

We review the history of the problem, then we discuss our contribution and
its relevance to previous work.

State of the Art. The first non-trivial approximation algorithm for FVST
was a 5/2-approximation algorithm by Cai, Deng, and Zang [14]. Cai et al.’s
approach utilizes the local ratio method but their results have polyhedral im-
plications as well. They show that whenever a tournament avoids certain sub-
tournaments, the basic LP relaxation of FVST is integral. We now explain the
details.

Let T be a tournament and 4(T) denote the collection of all {a, b, c} ⊆ V (T)
that induce a directed triangle in T . The basic relaxation for T is the polytope

P (T) := {x ∈ [0, 1]V (T) | ∀{a, b, c} ∈ 4(T) : xa + xb + xc ≥ 1}.

Let T5 be the set of tournaments on 5 vertices where the minimum FVS has
size 2. Up to isomorphism, |T5| = 3 (see [14], and Figure 5.1). We say that
T is T5-free if no subtournament of T is isomorphic to a member of T5. More
generally, let T be a collection of tournaments. A T -subtournament of T is a
subtournament of T that is isomorphic to some tournament of T . We say that
T is T -free if T does not contain a T -subtournament.

Cai et al. prove that P (T) is integral as soon as T is T5-free. In this case
solving a polynomial-size LP gives a minimum weight FVS. We let CDZ(T,w),

39

40 5. FEEDBACK VERTEX PROBLEM IN TOURNAMENTS

be the polynomial-time algorithm from [14], that given a T5-free tournament T
and w : V (T)→ Q≥0, finds a minimum weight feedback vertex set of T .

A 5/2-approximation algorithm follows directly from this. Using the local
ratio technique, while T contains a T5-subtournament S, one can reduce to a
smaller instance with one vertex of S removed. If one is aiming for a 5/2-
approximation algorithm, one can reduce to a T5-free tournament T , for which
one can even solve the problem exactly by applying CDZ(T,w).

The 5/2-approximation algorithm of [14] was improved to a 7/3-
approximation algorithm by Mnich, Williams, and Végh [56]. Loosely speaking,
Mnich et al.’s algorithm replaces T5 by T7, defined as the set of tournaments on 7
vertices where the minimum FVS has size 3. It is known that, up to isomorphism,
|T7| = 121 (see [56]).

If one is aiming for a 7/3-approximation algorithm, one can reduce to T7-
free tournaments. In fact, instead of using the local ratio technique, [56] use
iterative rounding, see the next paragraph. However, the basic relaxation is not
necessarily integral for T7-free tournaments, so obtaining a 7/3-approximation
algorithm requires more work.

The algorithm in [56] consists of two phases. Let the T7-relaxation be the LP
obtained from the basic relaxation by adding the constraint

∑
v∈V (S) xv ≥ 3 for

each T7-subtournament S of T . The first phase is an iterative rounding procedure
on the T7-relaxation. This reduces the problem to a residual tournament which
is T7-free and incurs an approximation factor of 7/3. The second phase is a 7/3-
approximation algorithm for FVST on the residual tournament, via an intricate
layering procedure.

Recently, Lokshtanov, Misra, Mukherjee, Panolan, Philip, and Saurab [54]
gave a randomized 2-approximation algorithm for FVST. Their algorithm does
not rely on [14], but rather on the idea of guessing vertices which are not part of
some optimal FVS and that of controlling the in-degree sequence of the tour-
nament. If X is a guessed optimal solution and v /∈ X then any triangle
{a, b, v} ∈ 4(T) is in a sense 2-good with respect to particular solution X by
taking w1(v) := w(v), w1(a) := 1, w1(b) := 1 then w1({a, b, v} ∩X) ≤ 2.

The derandomized version of their algorithm runs in quasi-polynomial-time
[54]. A deterministic 2-approximation algorithm would be best possible, since
for every ε > 0, FVST does not have a (2− ε)-approximation algorithm, unless
the Unique Games Conjecture is false or P=NP [46, 61].

FPT results. FVST is the restriction of the more general DFVS problem,
in which the input can be any directed graph. Given a directed graph D and
parameter k as input, the task is to decide if D has a hitting set X of size at most
k. Chen, Liu, Lu, O’sullivan, and Razgon [17] show that DFVS (and therefore
FVST) is fixed parameter tractable via a 4kk!nO(1)-time algorithm. Kumar and
Lokshtanov [49] give a 1.618k + nO(1)-time algorithm for FVST.

Our Contribution. We simplify Mnich et al.’s 7/3-approximation algo-
rithm for FVST [56]. Our new algorithm is based on performing just one round of
the Sherali-Adams hierarchy [60] on the basic relaxation, and is a significant sim-
plification of [56]. The following is our main theorem. Below, SAr(T,w) denotes

5.1. OVERVIEW 41

both the lower bound on OPT(T,w) provided by r rounds of the Sherali-Adams
hierarchy, and the corresponding linear program (LP).

Theorem 5.1. Algorithm 3 is a 7/3-approximation algorithm for FVST.
More precisely, the algorithm outputs in polynomial time a feedback vertex set
X := F ∪ F ′ such that w(X) ≤ 7

3
SA1(T,w) ≤ 7

3
OPT(T,w).

Algorithm 3 FVST

Input: A Tournament T and weight function w : V (T)→ Q>0

Output: A feedback vertex set of T of weight at most 7
3

OPT(T,w)
1: x← optimal solution to SA1(T,w)
2: F ← {v ∈ V (T) : xv ≥ 3/7}
3: if F is a FVS for T then
4: return F
5: else
6: Z ← ∅
7: repeat
8: add to Z all vertices of T − F − Z that are contained in no triangle
9: x←optimal solution to SA0(T − F − Z,w)

10: F ← F ∪ {v ∈ V (T − F − Z) : xv ≥ 1/2}
11: until T − F − Z is empty or xv < 1/2 for all v ∈ V (T − F − Z)
12: F ′ ← Layers(T − F − Z,w,∅, V (T − F − Z))
13: return F ∪ F ′
14: end if

Theorem 5.1 proves that the integrality gap of the relaxation obtained from
the basic one after one round of Sherali-Adams is always at most 7/3. We observe
that for random unweighted tournaments (T,1T), letting xv := 3/7 for all vertices
always gives a feasible solution while the optimum value is with high probability
very close to |V (T)|, see Corollary 5.13. Thus the worst case integrality gap of
SA1 is precisely 7/3.

Precise definitions will be given later. For now, we give a sketch of Algo-
rithm 3, and explain how it compares with [56].

Comparison to Previous Work. Our approach simplifies both phases of
Mnich et al.’s algorithm [56]. In our first phase (the rounding phase), instead of
considering the T7-relaxation, we consider SA1(T,w). Since the rounding phase
is the bottleneck of both algorithms, we obtain a significant speedup in run-time
by using a smaller LP. Note that SA1(T,w) only has O(n4) constraints, while
the T7-relaxation can have Ω(n7) constraints. Let x be an optimal solution to
SA1(T,w). If x has a coordinate xv such that xv ≥ 3/7, then we may round up xv
to 1. We continue the rounding using SA0(T,w) (the basic relaxation) instead,
in order to make sure that when we start the second phase (the layering phase),
in the residual tournament, the optimum value is at least one third of the total
weight. The whole rounding is done exactly as in [56], except that we replace
the T7-relaxation with SA1(T,w).

Then, we proceed to the second phase. The idea follows [56], but with a few
important simplifications. We start from a minimum in-degree vertex z and build

42 5. FEEDBACK VERTEX PROBLEM IN TOURNAMENTS

a breadth-first search (BFS) in-arborescence that partitions V (T) in layers such
that every triangle of T lies within three consecutive layers. Hence, a feedback
vertex set for T can be obtained by including every other layer, and, for every
layer i that is not picked, a set Fi that is a feedback vertex set for that layer (we
call the set Fi a local solution).

The main difference with the layering algorithm of [56] is how local solutions
are selected. The layers obtained by the algorithm in [56] are T5-free. This allows
them to use CDZ(T,w) as a subroutine to optimally select local solutions. Our
algorithm implements a simpler procedure to partition V (T) in layers. For the
first layer produced by the BFS procedure, consisting of all vertices that point
to z, we also use CDZ(T,w). However, for the subsequent layers, a different
property is established.

Such layers can be partitioned into two subtournaments, Ui and Si, that are
both acyclic. Hence, we can choose the cheaper of the two subtournaments as our
local solution Fi. Whenever the BFS procedure is stuck, that is, when none of
the remaining vertices can reach the root node z, the algorithm chooses another
root node and starts again (we refer to this as a fresh start). Our method gives
an improved 9/4-approximation algorithm for FVST on our residual tournament,
compared to the 7/3 factor obtained in [56].

5.2. Diagonals and Light Tournaments

Given tournament T , the polytope P (T) is precisely the E3-Vertex Cover
formulation LPHVC(H) of Chapter 1, where hypergraph H := (V (T),4(T)). We
apply Lemmas 3.7 and 3.6 from Section 3.4 in Chapter 3. First we tailor our
terminology specifically for FVST.

Recall that an (unordered) pair of vertices ab is a diagonal if there are vertices
u, v such that {u, v, a} ∈ 4(T) and {u, v, b} ∈ 4(T). We often will denote a
triangle {a, b, c} as abc. We remind the reader that a triangle contains a diagonal
if at least one of its pairs of vertices is a diagonal, and a triangle is heavy if it
contains at least two diagonals. A tournament T is heavy if at least one of its
triangles is heavy. If a tournament is not heavy, we say that it is light.

We re-frame Lemma 3.6 for our current purposes.

Lemma 5.2. Let T be a tournament and x ∈ SA1(T). If xv < 3/7 for all
v ∈ V (T), then T is light.

Next we prove some results connecting light tournaments to the work of [56],
which relies on tournaments being T7-free. Of the three tournaments in T5, it
turns out one of them is heavy (see Figure 5.1b), while the other two are light
and can be obtained from each other by reversing the orientation of one arc (see
Figure 5.1a). Moreover, although we do not use this fact, we have a computer-
assisted proof which shows that 120 out of 121 of the tournaments in T7 are heavy,
and only one is light. Thus, even though a light tournament is not necessarily
T7-free, the property of being light forbids almost all of the tournaments in T7
as subtournaments.

We now establish further properties of light tournaments. Let S5 ⊆ T5 and
S7 ⊆ T7 be the collection of tournaments defined in Figures 5.2 and 5.3, respec-
tively. If T is a tournament, we let A(T) be the set of arcs of T .

5.2. DIAGONALS AND LIGHT TOURNAMENTS 43

a b

c d e

(a) Each orientation of ab gives a
light tournament in T5.

a b

c d e

(b) The unique heavy tournament in
T5. Note that triangle dec is heavy.

Figure 5.1. The three tournaments in T5.

Lemma 5.3. Every S ∈ S5 is either heavy or has (ui, u3−i), (vi, v3−i) ∈ A(S) for
some i ∈ [2] (where S is labelled as in Figure 5.2).

Proof. Suppose (u1, u2), (v2, v1) ∈ A(S). Observe that zv2 is a diagonal
since v1u1z and v1u1v2 are triangles, and v2u2 is a diagonal since v1u1v2 and
v1u1u2 are triangles. Because zv2 and v2u2 are both diagonals, we conclude that
the triangle v2u2z is heavy. The result follows by symmetry. �

z

u1 u2

v1 v2

Figure 5.2. S5 is the following subset of T5, where the missing
arcs can be oriented arbitrarily.

Lemma 5.4. Every S ∈ S7 is heavy.

Proof. Suppose some S ∈ S7 is light, where S is labelled as in Figure 5.3.
By symmetry, we may assume that (u1, u2), (u2, u3) ∈ A(S). By Lemma 5.3,
(v1, v2), (v2, v3) ∈ A(S). Therefore, u2z is a diagonal since v1u1z and v1u1u2 are
triangles, and zv2 is a diagonal since v3u3z and v3u3v2 are triangles. We conclude
that v2u2z is a heavy triangle, which contradicts that S is light. �

44 5. FEEDBACK VERTEX PROBLEM IN TOURNAMENTS

z

u2 u3u1

v2 v3v1

Figure 5.3. S7 is the following subset of T7, where the missing
arcs can be oriented arbitrarily.

5.3. The Layering Procedure

This section proves the correctness of our layering algorithm, see Algorithm 4
below. A high-level, informal overview is as follows. Starting with a minimum
in-degree root vertex, proceeding in a BFS manner, partition the vertices of T
into layers. Each layer has the property that either it is T5-free, or is naturally
bi-partitioned into two acyclic subsets. We use these properties to obtain a
hitting set of weight at most 3

4
w(T), which, is enough to achieve the desired

approximation factor.
More formally, we use Lemmas 5.5 to 5.8 ensure that the algorithm actually

produces a feedback vertex set. Lemmas 5.9 to 5.12 prove that Algorithm 4 is a
9/4-approximation algorithm.

Let T be a light tournament with weight function w : V (T) →
Q≥0. For S ⊆ V (T), the in-neighborhood of S is N(S) := {v /∈ S |
(v, u) ∈ A(T) for some u ∈ S} and N(u) := N({u}). For every z ∈ V (T), de-
fine V1(z) = {z}, and for i ≥ 2 let Vi+1(z) := N(

⋃
j∈[i] Vj(z)). In other words

Vi(z) is the set of vertices whose shortest directed path to z has length exactly
i− 1.

Given two sets S,Z ⊆ V (T), we say that Z in-dominates S if for every s ∈ S
there is a z ∈ Z with (s, z) ∈ A(T). We say that Z 2-in-dominates S if Z has a
subset Z ′ ⊆ Z with |Z ′| ≤ 2 such that Z ′ in-dominates S.

We start with a lemma that is key to both the correctness and the perfor-
mance guarantee of Algorithm 4. See Figure 5.4.

Lemma 5.5. Let T be a light tournament, z be any vertex of T , and i ≥ 3.
If {zi−1, z′i−1} ⊆ Vi−1(z) (possibly zi−1 = z′i−1) 2-in-dominates Vi(z), then U :=
N(zi−1) ∩ Vi(z) and S := Vi(z)− U are triangle-free.

Proof. Suppose by contradiction that u1u2u3 is a triangle in U . Since zi−1 ∈
Vi−1(z) and i ≥ 3, we have (zi−1, r) ∈ A(T) for some r ∈ Vi−2(z). Since U ⊆
Vi(z), arcs (r, u1), (r, u2), (r, u3) ∈ A(T). Thus, ruizi−1 is a triangle for all i ∈ [3].
It follows that the triangle u1u2u3 is heavy since all of its arcs are diagonals, a
contradiction. If S has a triangle, we can repeat the same argument. �

5.3. THE LAYERING PROCEDURE 45

zi−2

zi−1

Layer i− 1 Layer i

a

c

b

Figure 5.4. The blue triangle abc can not exist in a light tour-
nament. All of its arcs are diagonals due to triangles vzi−1zi−2 for
v ∈ {a, b, c}.

Algorithm 4 Layers(T,w, Ui,W)
Input: T is a light tournament, w : V (T) → Q≥0, Ui is the current root layer,

andW is the set of unseen vertices (U0 := ∅ andW := V (T) on the first call).
We assume all objects that depend on i (including i itself) to be available
throughout subsequent recursive calls.

Output: A feedback vertex set F ′ of T of weight at most 3
4
w(T)

1: if W = ∅ then {Finished}
2: L0 ← ∪j evenUj ∪ Sj, L1 ← ∪j oddUj ∪ Sj
3: F ′ ← (∪ij=1F2j) ∪ L1 if w(L0) ≥ w(L1) otherwise (∪i−1j=0F2j+1) ∪ L0

4: return F ′
5: end if
6: if N(Ui) 6= ∅ then
7: {zi, z′i} ←2-in-dominates(N(Ui)) with w(N(zi) ∩W) ≥ w(N(z′i) ∩W)
8: Ui+1 ← N(zi) ∩W , Si+1 ← N(z′i) ∩W − Ui+1,W ← W − Ui+1 − Si+1

9: Fi+1 = Si+1

10: i← i+ 1
11: return Layers(T,w, Ui+1,W)
12: else {Fresh Start}
13: zi+1 ← choose z ∈ W with |N(z) ∩W | minimum
14: Ui+1 ← {zi+1} , Ui+2 ← N(zi+1) ∩W,Si+1 ← ∅
15: Fi+1 ← ∅
16: Fi+2 ← CDZ(Ui+2, w)
17: W ← W − (Ui+1 ∪ Ui+2)
18: i← i+ 2
19: return Layers(T,w, Ui+2,W)
20: end if

The next lemma ensures that, in the step following a fresh start, vertices zi, z′i
as on line 7 of Algorithm 4 exist.

Lemma 5.6. For an arbitrary vertex z in a light tournament T , V2(z) 2-in-
dominates V3(z).

46 5. FEEDBACK VERTEX PROBLEM IN TOURNAMENTS

Proof. Let H = {h1, h2, ..., hk} ⊆ V2(z) be an inclusion-wise minimal set
that in-dominates V3(z). Suppose k ≥ 3. By minimality, for each hi ∈ H there
must be some vi ∈ V3(z) such that (vi, hi) ∈ A(T) and (hi, vj) ∈ A(T) for all
j 6= i. Since (z, vi) ∈ A(T) for all i, it follows that T [{z, h1, h2, h3, v1, v2, v3}] is
isomorphic to a tournament in S7 (see Figure 5.3). Therefore, by Lemma 5.4,
T [{z, h1, h2, h3, v1, v2, v3}] is heavy, which contradicts that T is light. �

The next lemma ensures that the layer produced after a fresh start is T5-free,
allowing us to use the exact algorithm from [14]. Its proof follows the proof of
Lemma 9 of [56], except that we assume that T is light.

Lemma 5.7. Let z be a minimum in-degree vertex in a light tournament T .
Then V2(z) is T5-free.

Proof. We assume V2(z) 6= ∅, otherwise there is nothing to show, and we
suppose by contradiction that X ⊆ V2(z) is a light T5 (X cannot be heavy as T
is light, so X is oriented as in Figure 5.1a). For every u ∈ V2(z) there must be
a v ∈ V3(z) with (v, u) ∈ A(T). If not then N(u) (V2(z) = N(z), contradicting
the minimality of |N(z)|. Thus V3(z) 6= ∅. Let H ⊆ V3(z) be an inclusion-wise
minimal subset of V3(z) such that for every u ∈ V2(z) there exists v ∈ H with
(v, u) ∈ A(T). We distinguish cases according to the size of H.
Case 1: H = {h}. Then huiz are triangles for all ui ∈ X, therefore all arcs in X
are diagonals. Since X must contain at least some triangle, this triangle must
be heavy since all of its arcs are diagonals, contradicting the fact that T is light.
Case 2: H = {f, h}. Let X = {a, b, c, d, e}. We can assume without loss of
generality that f points to exactly three vertices of X, for the following reason.
If there are less than three, we can swap h with f . If there are more than three,
then f must point to a triangle of X (since T [X] is a T5-subtournament), which
would be heavy, arguing as in Case 1.

Notice that ed and ec are diagonals within X (due to triangles ade and adc,
bdc and bec, respectively), hence none of ad, ae, bc, be can be diagonals, otherwise
one of ade or cbe will be a heavy triangle. This implies that f cannot point
to both vertices of any of the latter pairs. From this, one easily derives that f
cannot point to a nor b. Hence, (a, f), (b, f), (f, d), (f, e), (f, c) ∈ A(T), which
implies (h, a), (h, b) ∈ A(T). This forces (e, h), (c, h), (d, h) ∈ A(T); otherwise,
again, one of ad, ae, bc, be is a diagonal. See Figure 5.5 for the orientations we
have determined thus far. Notice that adc and fca are triangles, so df is a
diagonal. Moreover, since had and zha are triangles, dz is a diagonal. Therefore
zfd is a heavy triangle, a contradiction.
Case 3: |H| ≥ 3. In this case, one can easily find a tournament in S7 made of z,
three vertices of V2(z) and three vertices of V3(z), in contradiction with Lemma
5.4 (see the proof of Lemma 5.6).

�
The next lemma ensures that, at each recursive call of Algorithm 4, we can

find local solutions by either applying CDZ(T,w) or Lemma 5.5. Together with
the previous lemmas, it is enough to conclude that Algorithm 4 outputs a feed-
back vertex set of our (light) tournament T . This will be formalized in Lemma
5.12.

5.3. THE LAYERING PROCEDURE 47

z

a b

c d e

f h

Figure 5.5. The orientations determined by the proof of Lemma 5.7.

Lemma 5.8. Let U0, . . . , U` and S1, . . . , S` be the sets produced by Algorithm 4,
run on input (T,w, U0 := ∅,W := V (T)). For all i ∈ [` − 1], if Ui+1 is defined
as on line 14 of Algorithm 4, then T [Ui+1] is T5-free; and if Si+1 is defined as on
line 8, then Si+1 is a feedback vertex set of T [Ui+1 ∪ Si+1].

Proof. If Ui+1 is defined as on line 14 of Algorithm 4, then Ui+1 is equal
to V2(z) for some z ∈ V (T). Therefore, by Lemma 5.7, T [Ui+1] = T [V2(z)] is
T5-free. If Si+1 is defined as on line 8, then there is some vertex zi−1 ∈ V (T) such
that Ui+1 ∪ Si+1 ⊆ V3(zi−1). By Lemma 5.6, N(Ui) 2-in-dominates Ui+1 ∪ Si+1.
Therefore, by Lemma 5.5, Si+1 and Ui+1 are both triangle-free. Thus, Si+1 is a
feedback vertex set of T [Ui+1 ∪ Si+1]. �

After having shown the correctness of Algorithm 4, we focus on bounding the
approximation ratio of its output. This mostly amounts to bounding the weight
of the local solutions obtained during the algorithm.

Lemma 5.9. Let F1, . . . , F` and U0, . . . , U` be the sets produced by Algorithm
4, run on input (T,w, U0 := ∅,W := V (T)). Then for all i ∈ [`], w(Fi) ≤
w(N(Ui−1))/2.

Proof. If Fi = ∅, then the lemma clearly holds. If Fi is defined as Si on line
9, then, by construction w(Si) ≤ w(N(Ui−1))/2. Thus, we may suppose that Fi
is defined as CDZ(Ui, w) on line 16, with Ui = N(zi−1)∩W , and Ui−1 = {zi−1}.
By Lemma 5.8, T [Ui] is T5-free, and by [14], Fi is a minimum weight feedback
vertex set of T [Ui]. Since the all 1

3
-vector is feasible for the basic relaxation of

T [Ui], and this relaxation is integral by [14],

w(Fi) ≤
1

3
w(Ui) =

1

3
w(N(Ui−1)) ≤

1

2
w(N(Ui−1)).

�

In the next two lemmas, we assume that Algorithm 3 is run on input (T,w),
and we establish properties of the sets defined within the algorithm during the
rounding phase (lines -11).

48 5. FEEDBACK VERTEX PROBLEM IN TOURNAMENTS

Lemma 5.10. After the rounding phase of Algorithm 3,

w(F) ≤ 7

3

(
SA1(T,w)− SA0(T − F − Z,w)

)
.

Proof. We proceed by induction on the number of vertices added to F on
line 10. In the base case, no vertices get added to F on line 10. Letting x denote
the optimal solution to SA1(T,w), we get

w(F) ≤ 7

3

∑
v∈F

w(v)xv

=
7

3

 ∑
v∈V (T)

w(v)xv −
∑

v∈V (T−F)

w(v)xv

≤ 7

3

 ∑
v∈V (T)

w(v)xv −
∑

v∈V (T−F−Z)

w(v)xv

≤ 7

3

(
SA1(T,w)− SA1(T − F − Z,w)

)
≤ 7

3

(
SA1(T,w)− SA0(T − F − Z,w)

)
.

Now let Fbefore, Zbefore, Fafter, Zafter denote the sets F and Z before and after
a single iteration of the loop in lines 7–11. Using an argument similar as the one
used above (arguing this time with an optimal solution x to SA0(T − Fbefore −
Zbefore, w)), we get

w(Fafter)− w(Fbefore) ≤
1

2

(
SA0(T − Fafter − Zafter, w)− SA0(T − Fbefore − Zbefore, w)

)
≤ 7

3

(
SA0(T − Fafter − Zafter, w)− SA0(T − Fbefore − Zbefore, w)

)
.

Hence, assuming that

w(Fbefore) ≤
7

3

(
SA1(T,w)− SA0(T − Fbefore − Zbefore, w)

)
,

we get

w(Fafter) ≤
7

3

(
SA1(T,w)− SA0(T − Fafter − Zafter, w)

)
.

The result follows. �

Lemma 5.11. After the rounding phase of Algorithm 3,

SA0(T − F − Z,w) = w(T − F − Z)/3.

Proof. The proof is the same as [56, Lemma 6], but for completeness, we
include it here. Let T ′ = T − F − Z. Suppose xv = 0 for some v ∈ V (T ′). Since
every vertex of T ′ is contained in a triangle, v is in some triangle vab of T . Thus,
xa + xb ≥ 1, and so max(xa, xb) ≥ 1/2, which contradicts that neither a nor b
are in F . Thus xv > 0 for all v ∈ V (T ′). Let y be an optimal solution to the

5.4. THE ALGORITHM 49

dual of SA0(T
′, w). By primal-dual slackness

∑
4:u∈4 y4 = wu for all u ∈ V (T ′).

Therefore,

w(V (T ′)) =
∑

u∈V (T ′)

∑
4:u∈4

y4 =
∑

4∈4(T ′)

y4
∑
u∈4

1 = 3
∑

4∈4(T ′)

y4 = 3 SA0(T
′, w).

�

Lemma 5.12. Let F ′ be the set output by Algorithm 4 on input (T ′ := T −
F − Z,w, U0 := ∅,W = V (T ′)). Then F ∪ F ′ is a feedback vertex set of T and
w(F ′) ≤ 9

4
SA0(T

′, w).

Proof. Algorithm 4 partitions V (T ′) into layers Si ∪ Ui. By symmetry, we
may assume that the total weight of the even layers is at least the total weight
of the odd layers. That is, w(L0) ≥ w(L1), using the notation of the algorithm.
Then the output F ′ consists of all odd layers and of the sets Fi, for i even. By
construction, Fi is an FVS of T ′[Si ∪ Ui], for each i. Since all triangles in T ′

are contained in three consecutive layers, F ′ is an FVS of T ′, and hence F ∪ F ′
is an FVS of T . Moreover, since w(Fi) ≤ w(Si ∪ Ui)/2 for each i, we have
w(L0)− w(∪j evenFj) ≥ w(V (T ′))/4. Therefore,

w(F ′) = w(V (T ′))− (w(L0)− w(∪j evenFj)) ≤
3

4
w(V (T ′)) =

9

4
SA0(T

′, w),

where the last equality follows from Lemma 5.11. �

5.4. The Algorithm

Given the results we have already established, it is now easy prove the cor-
rectness of Algorithm 3.

Theorem 5.1. Algorithm 3 is a 7/3-approximation algorithm for FVST.
More precisely, the algorithm outputs in polynomial time a feedback vertex set
X := F ∪ F ′ such that w(X) ≤ 7

3
SA1(T,w) ≤ 7

3
OPT(T,w).

Proof. By Lemma 5.12, F ∪ F ′ is a feedback vertex set of T . It remains
to show the approximation guarantee. Recall that F = {v : xv ≥ 3/7} where x
is an optimal solution for SA1(T,w). By Lemma 5.10, w(F) ≤ 7

3
(SA1(T,w) −

SA0(T−F−Z,w)). Since x restricted to T−F−Z is feasible for SA1(T−F−Z),
Lemma 5.12 implies that w(F ′) ≤ 9

4
SA0(T − F − Z,w) ≤ 7

3
SA0(T − F − Z,w).

Adding these two inequalities yields

w(F ′) + w(F) ≤ 7

3
SA1(T,w) ≤ 7

3
OPT(T,w).

�

Finally, we have the following corollary on the integrality gap of SA1 for
FVST, which we now formally define. If T is a tournament and w : V (T)→ R≥0,
we let

SAr(T,w) := min

 ∑
v∈V (T)

w(v)xv | x ∈ SAr(T)

 .

50 5. FEEDBACK VERTEX PROBLEM IN TOURNAMENTS

The (worst case) integrality gap of SAr for FVST is

sup
(T,w)

OPT(T,w)

SAr(T,w)

where the supremum is taken over all tournaments T and all weight functions
w : V (T)→ Q≥0.

Corollary 5.13. The integrality gap of SA1 for FVST is exactly 7/3.

Proof. The fact that the integrality gap of SA1 for FVST is at most 7/3
follows from Theorem 5.1. For the other inequality, note that for every tour-
nament T , the all 3

7
-vector is feasible for SA1(T) (by setting xuv = 1

7
for all

uv). On the other hand, we can generate a random n-node tournament by
choosing the orientation of each edge of Kn with probability 1/2. One can then
show via the probabilistic method that, for a random n-node tournament T ,
OPT(T,1T) = n−O(log n) with high probability [61]. �

5.5. Concluding Remarks

In this chapter we gave a simple 7/3-approximation algorithm for FVST,
based on performing just one round of the Sherali-Adams hierarchy on the basic
relaxation. It is a bit of a miracle that SA1(T) already “knows” a remarkable
amount of structure about feedback vertex sets in tournaments. It is unclear
how much more knowledge SAr(T) acquires as r increases, but our approach
naturally begs the question of whether performing a constant number of rounds
of Sherali-Adams leads to a 2-approximation for FVST. This would solve the
main open question from [54].

We suspect that performing more rounds does improve the approximation
ratio, but the analysis becomes more complicated. Indeed, it could be that
SA2(T) already gives a 9/4-approximation algorithm for FVST, since the layering
procedure has a 9/4-approximation factor. Note that SA2(T) does contain new
inequalities such as xa + xb + xc ≥ 1 + xAB + xac + xcb− xabc, for all abc ∈ 4(T),
which may be exploited.

In the next chapter we turn to cluster vertex deletion, and show that one
round of Sherali-Adams has an integrality gap of 5/2, and for every ε > 0 there
exists r ∈ N such that r rounds of Sherali-Adams has integrality gap at most
2 + ε. Indeed, this chapter can be seen as unifying the approaches of [56] and
some of the polyhedral results of [3].

CHAPTER 6

Cluster Vertex Deletion

In Chapter 4 we found results for Claw-VD using the local ratio technique
of Section 3.2 of Chapter 3. In Chapter 5 we followed the iterative rounding
framework of Section 3.3 to design an algorithm for FVST.

Here we study CVD from both perspectives. This chapter is based on Aprile,
Drescher, Fiorini, Huynh [3] which gives the first 2-approximation algorithm
for the cluster vertex deletion problem. This is tight, since as mentioned in
Chapter 1, approximating the problem within any constant factor smaller than
2 is UGC-hard.

Given a graph G, we say vertices u, v ∈ V (G) are true twins if N [u] = N [v],
and if a graph contains no true twins it is twin-free. Previous approximation
algorithms, see Fiorini et al. [28], reduce the problem by managing true twins and
then applying the local ratio technique of Chapter 3 Section 3.2. Our algorithm
also follows this methodology but adds a new recursive method for finding good
subgraphs in the second neighborhood of any vertex of the twin-free input graph.

From the polyhedral perspective we prove almost matching upper and lower
bounds on how well linear programming relaxations can approximate CVD.

In Section 6.1 we give a more detailed history of CVD, state our 2-
approximation algorithm, and discuss how it fits into the landscape of previous
work. We conclude the section with a high level overview of the proof. Section 6.2
covers the key algorithmic step of finding a 2-good subgraph. Section 6.3 shows
that the run-time is O(n4). In Section 6.4 we study the problem from a polyhe-
dral perspective. Finally in Section 6.5 we give some open questions.

6.1. Overview

Recall that Pk denotes the path on k vertices. Given graph G, we let Pk(G)
be the set of all induced paths in G of length k.

First recall a few definitions. A cluster graph is a graph that is a disjoint
union of complete graphs. Let G be any graph. A set X ⊆ V (G) is called a
hitting set if G − X is a cluster graph. Given a graph G and (vertex) weight
function w : V (G) → Q>0, the cluster vertex deletion problem (CVD) asks to
find a hitting set X whose weight w(X) :=

∑
v∈X w(v) is minimum. We denote

by OPT(G,w) the minimum weight of a hitting set.
If G and H are two graphs, we say that G contains H if some induced sub-

graph of G is isomorphic to H. Otherwise, G is said to be H-free. Denoting by
Pk the path on k vertices, we easily see that a graph is a cluster graph if and
only if it is P3-free. Hence, X ⊆ V (G) is a hitting set if and only if X contains
a vertex from each induced P3.

51

52 6. CLUSTER VERTEX DELETION

CVD has applications in graph modeled data clustering in which an unknown
set of samples may be contaminated. An optimal solution for CVD can recover
a clustered data model, retaining as much of the original data as possible [42].

As we have seen in Part 1, CVD can be modelled as an instance of E3-
Vertex Cover, and therefore “textbook" 3-approximation algorithms are avail-
able. Moreover, the problem has an approximation-preserving reduction from
Vertex Cover, hence obtaining a (2 − ε)-approximation algorithm for some
ε > 0 would contradict either the Unique Games Conjecture or P 6= NP.

The first non-trivial approximation algorithm for CVD was a 5/2-
approximation due to You, Wang and Cao [68]. Shortly afterward, Fiorini,
Joret and Schaudt gave a 7/3-approximation [28], and subsequently a 9/4-
approximation [28].

Main Result. In this chapter, we close the gap between 2 and 9/4 = 2.25
and prove the following tight result.

Theorem 6.1. CVD has a 2-approximation algorithm.

All previous approximation algorithms for CVD are based on the local ratio
technique, which we have introduced in Chapter 3. However, the approach we
use here significantly differs from previous algorithms in its crucial step, namely,
Step 14. This step specifies how to find a 2-good subgraph, the rest of the
algorithm follows the form given in Chapter 3 Section 3.2 Algorithm 2. See
Theorem 6.2 below.

Recall the definition of good and strongly good subgraphs from Section 3.2 of
Chapter 3.

If we cannot find a strongly α-good induced subgraph in G, we will find an
induced subgraph H that has special vertex v0 whose neighborhood N(v0) is
entirely contained in H, and a weight function wH : V (H) → Z>0 such that
wH(v) > 1 for all vertices v in the closed neighborhood N [v0] and wH(V (H)) 6
α ·OPT(H,wH) + 1. Since no inclusion-wise minimal hitting set X can contain
all the vertices of N [v0], wH(X ∩ V (H)) 6 wH(V (H)) − 1 6 α · OPT(H,wH)
and so (H,wH) is α-good in G. We say that (H,wH) (sometimes simply H) is
centrally α-good (in G) with respect to v0. Moreover, we call v0 the root vertex .

In order to illustrate these ideas, recall the two examples of Figure 3.3. First,
let H be a C4 (that is, a 4-cycle) contained in G and 1H denote the unit weight
function on V (H). Then (H,1H) is strongly 2-good, since

∑
v∈V (H) 1H(v) = 4 =

2 OPT(H,1H). Second, let H be a P3 contained in G, starting at a vertex v0
that has degree-1 in G. Then (H,1H) is centrally 2-good with respect to v0, but
it is not strongly 2-good.

Each time we find a 2-good weighted induced subgraph in G, the local ratio
technique allows us to recurse on an induced subgraph G′ of G in which at least
one vertex of H is deleted from G. For example, the 2-good induced subgraphs
mentioned above allow us to reduce to input graphs G that are C4-free and have
minimum degree at least 2.

In order to facilitate the search for α-good induced subgraphs, it greatly
helps to assume that G is twin-free. That is, G has no two distinct vertices u, u′
such that uu′ ∈ E(G) and for all v ∈ V (G − u − u′), uv ∈ E(G) if and only

6.1. OVERVIEW 53

Algorithm 5 Cluster-VD-apx(G,w)

Input: (G,w) a weighted graph
Output: X a minimal hitting set of G
1: if G is a cluster graph then
2: X ← ∅
3: else if there exists u ∈ V (G) with w(u) = 0 then
4: G′ ← G− u
5: w′(v)← w(v) for v ∈ V (G′)
6: X ′ ← Cluster-VD-apx(G′, w′)
7: X ← X ′ if X ′ is a hitting set of G; X ← X ′ ∪ {u} otherwise
8: else if there exist true twins u, u′ ∈ V (G) then
9: G′ ← G− u′

10: w′(u)← w(u) + w(u′); w′(v)← w(v) for v ∈ V (G′ − u)
11: X ′ ← Cluster-VD-apx(G′, w′)
12: X ← X ′ if X ′ does not contain u; X ← X ′ ∪ {u′} otherwise
13: else
14: find a weighted induced subgraph (H,wH) that is 2-good in G
15: λ∗ ← max{λ | ∀v ∈ V (H) : w(v)− λwH(v) > 0}
16: G′ ← G
17: w′(v)← w(v)−λ∗wH(v) for v ∈ V (H); w′(v)← w(v) for v ∈ V (G)−V (H)

18: X ← Cluster-VD-apx(G′, w′)
19: end if
20: return X

if u′v ∈ E(G). Equivalently, u and u′ are such that N [u] = N [u′]. Two such
vertices u, u′ are called true twins . As in [28], our algorithm reduces G whenever
it has a pair of true twins u, u′ (see Steps 8–12). The idea is simply to add the
weight of u′ to that of u and delete u′.

The crux of the analysis of the algorithm, especially Step 14, relies on the
following structural result. Below, we denote by N6i[v] (resp. Ni(v)) the set of
vertices at distance at most (resp. equal to) i from vertex v (we omit the subscript
if i = 1).

Theorem 6.2. Let G be a twin-free graph, let v0 be any vertex of G, and
let H be the subgraph of G induced by N62[v0]. There exists a weight function
wH : V (H)→ Z>0 such that (H,wH) is either strongly 2-good, or centrally 2-good
in G with respect to v0. Moreover, wH can be constructed in polynomial time.

We also study CVD from the polyhedral point of view. In particular we
investigate how well linear programming (LP) relaxations can approximate the
optimal value of CVD. As in [5, 13, 16], we use the notation of Chapter 3 which,
by design, allows for extended formulations.

Letting P3(G) denote the collection of all vertex sets {u, v, c} that induce a P3

in G, we define P (G) := {x ∈ [0, 1]V (G) | ∀{u, v, c} ∈ P3(G) : xu + xv + xc > 1}.
We let SAr(G) denote the relaxation obtained from P (G) by applying r rounds
of the Sherali-Adams hierarchy [60]. If a weight function w : V (G) → Q>0 is

54 6. CLUSTER VERTEX DELETION

provided, we let SAr(G,w) := min{
∑

v∈V (G)w(v)xv | x ∈ SAr(G)} denote the
optimum value of the corresponding linear programming relaxation.

It is standard to show that the straightforward LP relaxation P (G) has
worst case integrality gap equal to 3 (by worst case, we mean that we take
the supremum over all graphs G). Indeed, for a random graph G in G(n, 1/2)
, OPT(G,1G) = n − O(log2 n) with high probability, while LP(G,1G) 6 n/3.
In other words, the worst case integrality gap after applying zero rounds of the
Sherali-Adams hierarchy is 3. To see this note that Bollobás,and Erdös showed
[8] that with high probability the independence and clique numbers of G are
logarithmic. That is ω(G) = O(log n), α(G) = O(log n). If X is a minimum
sized hitting set for the CVD problem then it follows that with high probability
G − X is a collection of O(log n) cliques each of size O(log n). Thus with high
probability |X| = n−O(log2 n).

On the positive side, we show how applying one round of the Sherali-Adams
hierarchy [60] gives a relaxation with integrality gap at most 5/2 = 2.5, see
Theorem 6.16. To complement this, we prove that the worst case integrality
gap of the relaxation is precisely 5/2, see Theorem 6.17. Then, by relying on
Theorem 6.2, we show that the integrality gap decreases to 2 + ε after applying
poly(1/ε) rounds, see Theorem 6.18.

On the negative side, applying known results about Vertex Cover [5], we
show that no polynomial-size LP relaxation of CVD can have integrality gap at
most 2− ε for some ε > 0. This result is unconditional: it does not rely on P 6=
NP nor the Unique Games Conjecture.

Comparison to previous works. We now revisit all previous approxima-
tion algorithms for CVD [28, 28, 68]. The presentation given here slightly departs
from [28, 68], and explains in a unified manner what is the bottleneck in each of
the algorithms.

Fix k ∈ {3, 4, 5}, and let α := (2k− 1)/(k− 1). Notice that α = 5/2 if k = 3,
α = 7/3 if k = 4 and α = 9/4 if k = 5. In [28, Lemma 3], it is shown that if a
twin-free graph G contains a k-clique, then one can find an induced subgraph H
containing the k-clique and a weight function wH such that (H,wH) is strongly
α-good.

Therefore, in order to derive an α-approximation for CVD, one may assume
without loss of generality that the input graph G is twin-free and has no k-clique.
Let v0 be a maximum degree vertex in G, and let H denote the subgraph of G
induced by N62[v0]. In [28], it is shown by a tedious case analysis that one can
construct a weight function wH such that (H,wH) is 2-good in G, using the fact
that G has no k-clique.

The simplest case occurs when k = 3. Then N(v0) is a stable set. Letting
wH(v0) := d(v0) − 1, wH(v) := 1 for v ∈ N(v0) and wH(v) := 0 for the other
vertices of H, one easily sees that (H,wH) is (centrally) 2-good in G . For higher
values of k, one has to work harder.

In this paper, we show that one can always, and in polynomial time, construct
a weight function wH on the vertices at distance at most 2 from v0 that makes
(H,wH) 2-good in G, provided that G is twin-free, see Theorem 6.2. This result

6.1. OVERVIEW 55

was the main missing ingredient in previous approaches, and single-handedly
closes the approximability status of CVD.

Other related works. CVD has also been widely studied from the per-
spective of fixed parameter tractability. Given a graph G and parameter k as
input, the task is to decide if G has a hitting set X of size at most k. A 2knO(1)-
time algorithm for this problem was given by Hüffner, Komusiewicz, Moser, and
Niedermeier [42]. This was subsequently improved to a 1.911knO(1)-time algo-
rithm by Boral, Cygan, Kociumaka, and Pilipczuk [9], and a 1.811knO(1)-time
algorithm by Tsur [64]. By the general framework of Fomin, Gaspers, Loksh-
tanov, and Saurabh [30], these parametrized algorithms can be transformed into
exponential algorithms which compute the size of a minimum hitting set for G
exactly, the fastest of which runs in time O(1.488n).

For polyhedral results, [41] gives some facet-defining inequalities of the CVD
polytope, as well as complete linear descriptions for special classes of graphs.

For unit weights, note that CVD is equivalent to the problem of deleting as
few elements as possible from a symmetric relation to obtain a transitive relation,
while FVST is equivalent to the problem of deleting as few elements as possible
from an antisymmetric and complete relation to obtain a transitive relation.

In Chapter 5 FVST we show that one round of the Sherali-Adams hierarchy
actually provides a 7/3-approximation. This is in contrast with Theorem 6.17.

Among other related covering and packing problems, Fomin, Le, Lokshtanov,
Saurabh, Thomassé, and Zehavi [31] studied both CVD and FVST from the
kernelization perspective. They proved that the unweighted versions of both
problems admit subquadratic kernels: O(k

5
3) for CVD and O(k

3
2) for FVST.

Overview of the proof. We give a sketch of the proof of Theorem 6.2.
If the subgraph induced by N(v0) contains a hole (that is, an induced cycle of
length at least 4), then H contains a wheel, which makes H strongly 2-good, see
Lemma 6.3. If the subgraph induced by N(v0) contains an induced 2P3 (that
is, two disjoint copies of P3 with no edges between them), then H is strongly
2-good, see Lemma 6.4. This allows us to reduce to the case where the subgraph
induced by N(v0) is chordal and 2P3-free.

Lemma 6.7 then gives a direct construction of a weight function wH which
certifies that (H,wH) is centrally 2-good, provided that the subgraph induced
by N [v0] is twin-free1. This is the crucial step of the proof. It serves as the base
case of the induction. Here, we use a slick observation due to Lokshtanov [53]:
since the subgraph induced by N(v0) is chordal and 2P3-free, it has a hitting set
that is a clique. In a previous version, our proof of Theorem 6.2 was slightly
more complicated.

We show inductively that we can reduce to the case where the subgraph
induced by N [v0] is twin-free. The idea is to delete vertices from H to obtain
a smaller graph H ′, while preserving certain properties, and then compute a
suitable weight function wH for H, given a suitable weight function wH′ for H ′.
We delete vertices at distance 2 from v0. When this creates true twins in H, we

1twin-free is not a hereditary property. In general, if G is twin-free and H ⊆ G, we can
not conclude that H is twin-free.

56 6. CLUSTER VERTEX DELETION

delete one vertex from each pair of true twins. At the end, we obtain a twin-free
induced subgraph of H[N [v0]], which corresponds to our base case.

We conclude the introduction with a brief description of the different sections
of the chapter. Section 6.2 is entirely devoted to the proof of Theorem 6.2. The
proof of Theorem 6.1 is given in Section 6.3, together with a complexity analysis
of Algorithm 5. Section 6.4 presents our polyhedral results. A conclusion is given
in Section 6.5. There, we state a few open problems for future research.

6.2. Finding 2-good induced subgraphs

The goal of this section is to prove Theorem 6.2. Our proof is by induction
on the number of vertices in H := G[N≤2[v0]]. First, we quickly show that we
can assume that the subgraph induced by N(v0) is chordal and 2P3-free. Using
this, we prove the theorem in the particular case where the subgraph induced by
N [v0] is twin-free. Finally, we prove the theorem in the general case by showing
how to deal with true twins.

Restricting to chordal, 2P3-free neighborhoods. As pointed out earlier
in the introduction, 4-cycles are strongly 2-good. This implies that wheels of
order 5 are strongly 2-good (putting a zero weight on the apex). Recall that
a wheel is a graph obtained from a cycle by adding an apex vertex (called the
center). We now show that all wheels of order at least 5 are strongly 2-good.
This allows our algorithm to restrict to input graphs such that the subgraph
induced on each neighborhood is chordal. In a similar way, we show that we can
further restrict such neighborhoods to be 2P3-free.

Lemma 6.3. Let H := Wk be a wheel on k > 5 vertices and center v0, let
wH(v0) := k − 5 and wH(v) := 1 for v ∈ V (H − v0). Then (H,wH) is strongly
2-good.

Proof. Notice that OPT(H,wH) > k − 3 since a hitting set either contains
v0 and at least 2 more vertices, or does not contain v0 but contains k − 3 other
vertices. Hence,

∑
v∈V (H)wH(v) = k − 5 + k − 1 = 2(k − 3) 6 2 OPT(H,wH).

�

2

11

1 1 1

1

Figure 6.1. v0 along with 2P3 is strongly 2-good.

Lemma 6.4. Let H be the graph obtained from 2P3 by adding a universal vertex
v0. Let wH(v0) := 2 and wH(v) := 1 for v ∈ V (H−v0). Then (H,wH) is strongly
2-good.

Proof. OPT(H,wH) > 4, see Figure 6.1. Thus,
∑

v∈V (H)wH(v) = 8 6
2 OPT(H,wH). �

6.2. FINDING 2-GOOD INDUCED SUBGRAPHS 57

The twin-free case. Throughout this section, we assume that H is a twin-
free graph with a universal vertex v0 such that H − v0 is chordal and 2P3-free.
Our goal is to construct a weight function wH that certifies that H is centrally
2-good.

It turns out to be easier to define the weight function on V (H − v0) =
N(v0) first, and then adjust the weight of v0. This is the purpose of the next
lemma. Below, ω(G,w) denotes the maximum weight of a clique in weighted
graph (G,w).

Lemma 6.5. Let H be a graph with a universal vertex v0 and H ′ := H− v0. Let
wH′ : V (H ′)→ Z>1 be a weight function such that
(i) wH′(V (H ′)) > 2ω(H ′, wH′) and
(ii) OPT(H ′, wH′) > ω(H ′, wH′)− 1.
Then we can extend wH′ to a function wH : V (H) → Z>1 by finding a weight
wH(v0), such that wH(V (H)) 6 2 OPT(H,wH) + 1. In other words, (H,wH) is
centrally 2-good with respect to v0.

Proof. Notice that
OPT(H,wH) = min(wH(v0) + OPT(H ′, wH′), wH′(V (H ′))− ω(H ′, wH′))

since a hitting set of H that does not contain v0 must be the complement of a
clique in H − v0.

Now, choose wH(v0) ∈ Z>1 such that
max(1, wH′(V (H ′))− 2 OPT(H ′, wH′)− 1) 6 wH(v0)

6 wH′(V (H ′))− 2ω(H ′, wH′) + 1.(?)

It is easy to check that such wH(v0) exists because the lower bound in (?) is at
most the upper bound, thanks to conditions (i) and (ii).

This choice satisfies wH(V (H)) 6 2 OPT(H,wH) + 1 since it holds both in
case OPT(H,wH) = wH(v0)+OPT(H ′, wH′) by the upper bound on wH′(V (H ′))
given by (?), and in case OPT(H,wH) = wH′(V (H ′))−ω(H ′, wH′) by the upper
bound on wH(v0) given by (?). �

We call a hitting set X of a graph G a hitting clique if X is also a clique.
We denote the set of maximal cliques of chordal graph G by C(G). The clique
intersection graph of G has vertices C(G), and edges KK ′ for every K,K ′ ∈ C(G)
such that K ∩ K ′ is not empty and we say the weight of KK ′ is |K ∩ K ′|. A
clique tree of G is a maximum weight spanning tree of the clique intersection
graph (Bernstein and Goodman [6]). Every clique tree of G satisfies the inter-
section property : for every two maximal cliques K, K ′, the intersection K ∩K ′
is contained in every clique of the K–K ′ path in T (see Blair and Peyton [7]).

Lemma 6.6. Every chordal, 2P3-free graph contains a hitting clique.

Proof. Let G be a chordal, 2P3-free graph. Since G is chordal, G admits a
clique tree T . In T , the vertices are the maximal cliques of G and, for every two
maximal cliques K, K ′, the intersection K∩K ′ is contained in every clique of the
K–K ′ path in T . For an edge e := KK ′ of T , Let T1 and T2 be the components
of T − e and G1 and G2 be the subgraphs of G induced by the union of all the
cliques in T1 and T2, respectively. It is easy to see that deleting K∩K ′ separates

58 6. CLUSTER VERTEX DELETION

G1 from G2 in G. Now, since G is 2P3-free, at least one of G′1 := G1 − (K ∩K ′)
or G′2 := G2− (K ∩K ′) is a cluster graph. If both G′1 and G′2 are cluster graphs,
we are done since K ∩K ′ is the desired hitting clique. Otherwise, if G′i is not a
cluster graph, then we can orient e towards Ti. Proceeding this way, we define
an orientation of T , which must have a sink K0. But then removing K0 from G
leaves a cluster graph, and we are done. �

H H − v0

v

Sv

Figure 6.2. Here H is twin-free, v0 is the gray vertex and the
blue vertices form a hitting clique K0 for H − v0, which is chordal
and 2P3-free. For v ∈ K0, the set Sv defined as in the proof of
Lemma 6.7 consists of the unique maximal independent set con-
taining v. We obtain wH = (6, 1, 1, 1, 1, 3, 3, 3), which is easily seen
to be centrally 2-good with respect to v0.

We are ready to prove the base case for Theorem 6.2.

Lemma 6.7. Let H be a twin-free graph with universal vertex v0 such that H−v0
is chordal and 2P3-free. There exists a weight function wH such that (H,wH) is
centrally 2-good with respect to v0. Moreover, wH can be found in time polynomial
in the size of H.

Proof. By Lemma 6.6, some maximal clique of H − v0, say K0, is a hitting
set.

We claim that there is a family of stable sets S = {Sv | v ∈ K0} of H − v0
satisfying the following properties:
(P1) every vertex of H − v0 is contained in some Sv;
(P2) for each v ∈ K0, Sv contains v and at least one other vertex;
(P3) for every two distinct vertices v, v′ ∈ K0, H[Sv ∪ Sv′] contains a P3.

Before proving the claim, we prove that it implies the lemma, making use of
Lemma 6.5. Consider the weight function wH′ :=

∑
v∈K0

χSv on the vertices of
H ′ := H − v0 defined by giving to each vertex u a weight equal to the number
of stable sets Sv that contain u (see Figure 6.2). Let us show that wH′ satisfies
the conditions of Lemma 6.5 and can therefore be extended to a weight function
wH on V (H) such that (H,wH) is centrally 2-good with respect to v0.

First, by (P1), we have wH′(u) ∈ Z>1 for all u ∈ V (H ′). Second, condition (i)
of Lemma 6.5 follows from (P2) since each stable set Sv contributes at least two
units to wH′(V (H ′)) and at most one unit to ω(H ′, wH′). Third, (P3) implies
that that every hitting set of H ′ meets every stable set Sv, except possibly one.
Hence, OPT(H ′, wH′) > |K0|− 1. Also, every clique of H ′ meets every stable set
Sv in at most one vertex, implying that ω(H ′, wH′) 6 |K0|, and equality holds
since wH′(K0) = |K0|. Putting the last two observations together, we see that

6.2. FINDING 2-GOOD INDUCED SUBGRAPHS 59

OPT(H ′, wH′) > |K0|−1 = ω(H ′, wH′)−1 and hence condition (ii) of Lemma 6.5
holds.

Now, we prove that our claim holds. Let K1, . . . , Kt denote the clusters
(maximal cliques) of cluster graphH−v0−K0. For i ∈ [t], consider the submatrix
Ai of the adjacency matrix A(H) with rows indexed by the vertices of K0 and
columns indexed by the vertices of Ki.

Notice that Ai contains neither
(

1 0
0 1

)
nor

(
0 1
1 0

)
as a submatrix, as this

would give a C4 contained in H − v0, contradicting the chordality of H − v0.
Hence, after permuting its rows and columns if necessary, Ai can be assumed to
be staircase-shaped. That is, every row of Ai is nonincreasing and every column
nondecreasing. Notice also that Ai does not have two equal columns, since these
would correspond to two vertices of Ki that are true twins.

For each Ki that is not complete to v ∈ K0, define ϕi(v) as the vertex u ∈ Ki

whose corresponding column in Ai is the first containing a 0 in row v. Now, for
each v, let Sv be the set including v, and ϕi(v), for each Ki that is not complete
to v.

Because K is maximal, no vertex u ∈ Ki is complete to K0. Since no two
columns of Ai are identical, we must have u = ϕi(v) for some v ∈ K0. This
proves (P1).

Notice that v ∈ Sv by construction and that |Sv| > 2 since otherwise, v would
be universal in H and thus a true twin of v0. Hence, (P2) holds.

Finally, consider any two distinct vertices v, v′ ∈ K0. Since v, v′ are not true
twins, the edge vv′ must be in a P3 contained in H − v0. Assume, without loss
of generality, that there is a vertex u ∈ Ki adjacent to v and not to v′ for some
i ∈ [t]. Then {v, v′, ϕi(v′)} induces a P3 contained in H[Sv ∪ Sv′], proving (P3).
This concludes the proof of the claim.

We remark that the weight function wH can be computed in polynomial time.
We first obtain efficiently the collection S, hence the restriction of wH to H ′, and
then just let wH(v0) := wH′(V (H ′))−2ω(H ′, wH′)+1 = wH′(V (H ′))−2|K0|+1.
This sets wH(v0) to its upper bound in (?), see the proof of Lemma 6.5. �

Handling true twins. We start with an extra bit of terminology relative
to true twins. Let G be a twin-free graph, and v0 ∈ V (G). Suppose that u, u′
are true twins in G[N [v0]]. Since G is twin-free, there exists a vertex v that is
adjacent to exactly one of u, u′. We say that v is a distinguisher for the edge uu′
(or for the pair {u, u′}). Notice that either uu′v or u′uv is an induced P3. Notice
also that v is at distance either 1 or 2 from v0.

Now, consider a graph H with a special vertex v0 ∈ V (H) (the root vertex)
such that

(H1) every vertex is at distance at most 2 from v0, and
(H2) every pair of vertices that are true twins in H[N [v0]] has a distinguisher.

Let v be any vertex that is at distance 2 from v0. Consider the equivalence
relation ≡ on N [v0] with u ≡ u′ whenever u = u′ or u, u′ are true twins in H− v.
Observe that the equivalence classes of ≡ are of size at most 2 since, if u, u′, u′′
are distinct vertices with u ≡ u′ ≡ u′′, then v cannot distinguish every edge of

60 6. CLUSTER VERTEX DELETION

the triangle on u, u′ and u′′. Hence, two of these vertices are true twins in H,
which contradicts (H2).

From what precedes, the edges contained in N [v0] that do not have a distin-
guisher in H − v form a matching M := {u1u′1, . . . , uku′k} (possibly, k = 0). Let
H ′ denote the graph obtained from H by deleting v and exactly one endpoint
from each edge of M . Notice that the resulting subgraph is the same, up to
isomorphism, no matter which endpoint is chosen.

The lemma below states how we can obtain a weight function wH that certifies
that H is centrally 2-good from a weight function wH′ that certifies that H ′ is
centrally 2-good. It is inspired by [28, Lemma 3]. See Figure 6.3 for an example.

Lemma 6.8. Let H be any graph satisfying (H1) and (H2) for some v0 ∈ V (H).
Let v ∈ N2(v0). Let M := {u1u′1, . . . , uku′k} be the matching formed by the edges
in N [v0] whose unique distinguisher is v, where u′i 6= v0 for all i (we allow the
case k = 0). Let H ′ := H − u′1 − · · · − u′k − v. Given a weight function wH′ on
V (H ′), define a weight function wH on V (H) by letting wH(u′i) := wH′(ui) for
i ∈ [k], wH(v) :=

∑k
i=1wH′(ui) =

∑k
i=1wH(u′i), and wH(u) := wH′(u) otherwise.

First, H ′ satisfies (H1) and (H2). Second, if (H ′, wH′) is centrally 2-good, then
(H,wH) is centrally 2-good.

Proof. For the first part, notice that H ′ satisfies (H1) by our choice of v.
Indeed, deleting v does not change the distance of the remaining vertices from
v0. By definition, H ′ satisfies (H2).

For the second part, notice that wH(u) > 1 for all u ∈ N [v0] since wH′(u) > 1
for all u ∈ N [v0]− {v, u′1, . . . , u′k}. To argue that wH(V (H)) 6 2 OPT(H,wH) +
1, one can check that any hitting set of H must either contain v or at least
one endpoint of each edge uiu′i ∈ M . Hence OPT(H,wH) >

∑k
i=1wH′(ui) +

OPT(H ′, wH′).
Since (H,wH′) is centrally 2-good, wH′(V (H ′)) 6 2 OPT(H ′, wH′) + 1. It

follows that

wH(V (H)) =

=2
∑k
i=1 wH′ (ui)︷ ︸︸ ︷

wH(v) +
k∑
i=1

wH(u′i) +

62OPT(H′,wH′)+1︷ ︸︸ ︷
wH′(V (H ′))

6 2 OPT(H,wH) + 1 . �

Putting things together. We are ready to prove Theorem 6.2.

Proof of Theorem 6.2. We can decide in polynomial time (see for in-
stance [63]) if H[N(v0)] is chordal, and if not, output a hole of H[N(v0)]. If the
latter holds, we are done by Lemma 6.3. If the former holds, we can decide in
polynomial time (see [62], and the proof of Lemma 6.6) whether H contains a
2P3. If it does, we are done by Lemma 6.4.

From now on, assume that the subgraph induced by N(v0) is chordal and
2P3-free. This is done without loss of generality. Notice that hypotheses (H1)
and (H2) from Section 6.2 hold for H. This is obvious for (H1). To see why (H2)
holds, remember that G is twin-free. Hence, every edge uu′ contained in N [v0]

6.3. RUNNING-TIME ANALYSIS 61

v

H H − v H ′

Figure 6.3. Here v0 is the gray vertex and v is the red vertex.
H−v violates (H2), and contains two pairs of true twins, indicated
by the red edges. Lemma 6.8 applies. We see that H ′ is a P3, for
which Lemma 6.7 gives wH′ = 1H′ . In (H,wH), all vertices get a
unit weight except v, which gets a weight of 2, since there are 2
pairs of true twins in H−v. Thus, wH = (1, 2, 1, 1, 1, 1), where the
entries corresponding to v0 and v are bold and red, respectively.

must have a distinguisher in G, which is in N62[v0]. (In fact, notice that if u and
u′ are true twins in H[N [v0]] then the distinguisher is necessarily in N2(v0).)

We repeatedly apply Lemma 6.8 in order to delete each vertex of N2(v0) one
after the other and reduce to the case where H is a twin-free graph for which v0
is universal. We can then apply Lemma 6.7. The whole process takes polynomial
time. �

6.3. Running-time Analysis

We now analyze the running-time of Algorithm 5. We assume that input
graphs are given by their adjacency matrix. We need the following easy lemma,
whose proof we include for completeness.

Lemma 6.9. Given a matrix N ∈ {0, 1}r×c, the set of all equivalence classes of
equal rows of N can be found in time O(rw).

Proof. Let R0 and R1 be the set of rows of N whose first entry is 0 and
1, respectively. We can determine R0 and R1 by reading the first column of N ,
which takes time O(r). We then recurse on N ′0 and N ′1, where N ′i is the submatrix
of N induced by Ri and the last c− 1 columns of N . �

Before proving the next Lemma we remark that, given a graph H with n
vertices and m edges, one can check whether H is a cluster by checking that
each of its components is a clique, which takes O(n2) time.

Lemma 6.10. Let G be an n-vertex, twin-free graph. Step 14, i.e. the construc-
tion of the 2-good weighted induced subgraph (H,wH), can be performed in time
O(n3).

Proof. We fix any vertex v0 ∈ V (G), and let H = G[N62[v0]]. We can
check in O(n2) time whether H[N(v0)] is chordal by using the algorithm from
[63]. IfH[N(v0)] is not chordal this algorithm returns, as a certificate, an induced
hole C. By Lemma 6.3, H[V (w) + v0] is strongly 2-good and the corresponding
function wH can be computed straightforwardly, hence we are done. Suppose

62 6. CLUSTER VERTEX DELETION

now that H[N(v0)] is chordal. We can construct the clique tree of H[N(v0)] (see
for instance [62]) in O(n2) time. Each edge of the tree induces a separation of
H[N(v0)], and we can check if each side is a cluster graph in O(n2) time. If
neither side is a cluster graph, then we have found a 2P3 in H[N(v0)]. Hence,
H[V (2P3) + v0] is strongly 2-good and the corresponding function wH can be
computed straightforwardly. Since the clique tree has at most |H| ≤ n vertices,
by orienting its edges as in the proof of Lemma 6.6 we find, in O(n3) time, a
hitting clique. By applying Lemma 6.8 to get rid of true twins, which can be
done in O(n2) time, we obtain a subgraph satisfying the hypotheses of Lemma
6.7. The weight function constructed in the proof of Lemma 6.7 can be obtained
in O(n3) time. �

Lemma 6.11. Algorithm 1 runs in O(n4)-time.

Proof. By Lemma 6.9, finding all true twins in G can be done in time O(n2).
Therefore, the most expensive recursive call of the algorithm is the construction of
the 2-good weighted induced subgraph (H,wH) from Lemma 6.10, which can be
done in time O(n3). Therefore, the running-time T (n) of the algorithm satisfies
T (n) 6 T (n− 1) +O(n3), which gives T (n) = O(n4). �

Before we formally prove the main theorem, we give a lemma from [28, 28]
which formally justifies Steps 8-12.

Lemma 6.12 ([28]). Let (G,w) be a weighted graph and u, u′ ∈ V (G) be true
twins. Let (G′, w′) denote the weighted graph obtained from G by transferring
the whole weight of u′ to u and then deleting u′, that is, let G′ := G − u′ and
w′(v) := w(v) if v ∈ V (G′), v 6= u and w′(v) := w(u) + w(u′) if v = u. Then
OPT(G,w) = OPT(G′, w′).

Proof. Note that if X ′ is a hitting set for G′ then it naturally gives a
hitting set X for G of the same weight. Because no induced P3 can contain
both u and u′ we let X := X ′ ∪ {u′} if u ∈ X and X := X ′ otherwise. Thus
OPT(G,w) ≤ OPT(G′, w′).

On the other hand we have OPT(G′, w′) ≤ OPT(G,w) since an optimal
solution X must be inclusionwise minimal, and therefore either contains both
u, u′ of neither of them. �

Proof of Theorem 6.1. We proceed by induction on the number of re-
cursive calls of algorithm 5 to show that the set X returned is an inclusionwise
minimimal hitting set of G with c(X) ≤ 2 OPT(G,w). The base case trivially
holds. Here there are no recursive calls, which occurs when input graph G is
already a cluster graph and X = ∅ is returned on line 2. Now assume that there
is at least 1 recursive call returning X ′ which is an inclusionwise minimal hitting
set of its input (G′, w′) satisfying w′(X ′) ≤ 2 OPT(G′, w′). We have the following
cases:
Case 1: The recursive call occurs at Step 6. We have w′(X) = w(X) and
OPT(G,w) = OPT(G′, w′) since G′ = G − u, w(u) = 0, for all other v ∈
V (G′), w′(v) = w(v). Therefore w(X) = w′(X) ≤ 2 OPT(G′, w) = 2 OPT(G,w).
Case 2: The recursive call occurs at Step 11. By Lemma 6.12 w(X) = w′(X ′) ≤
2 OPT(G′, w′) = 2 OPT(G,w).

6.4. POLYHEDRAL RESULTS 63

Case 3: The recursive call occurs at Step 18. Here G = G′ and X = X ′, therefore
by induction X is an inclusionwise minimal hitting set. Let w′′ be the extension
of wH to V (G) defined as w′′(v) := 0 for v ∈ V (G) − V (H). By induction
w′(X) ≤ 2 OPT(G,w′) , λ∗w′′(X) ≤ 2 OPT(G, λ∗w′′) since (H,wH) is 2-good in
G. So w(X) = w′(X)+λ∗w′′(X) ≤ 2 OPT(G,w) by the Local Ratio Lemma 3.1.

�

6.4. Polyhedral results

Recall the Sherali-Adams hierarchy [60] which we introduced in Section 3.3
of Chapter 3.

Let P3(G) denote the collection of all vertex sets {u, v, w} that induce a P3

in G and let SAr(G) := SAr(P (G)), where

P (G) := {x ∈ [0, 1]V (G) | ∀{u, v, w} ∈ P3(G) : xu + xv + xw > 1} .
If a weight function w : V (G)→ R>0 is provided, we let

SAr(G,w) := min

 ∑
v∈V (G)

w(v)xv | x ∈ SAr(G)

denote the optimum value of the corresponding linear programming relaxation.
For the sake of simplicity, we sometimes denote by SAr(G,w) the above linear
program itself.

The next lemma is a re-framing of Lemma 3.7 which applies to all E3-Vertex
Cover problems.

Lemma 6.13. Let x ∈ SA1(G). If G contains a P3 which has a diagonal, then
xv > 2/5 for some vertex of the P3.

In the next result, the order of weighted graph (G,w) is simply defined as
the order |G| of G.

Lemma 6.14. Fix α > 1 and r ∈ Z>0. Let (G,w) be a minimum order weighted
graph such that OPT(G,w) > α · SAr(G,w). The following two assertions hold:
(i) if x is an optimal solution to SAr(G,w), then xv < 1/α for all v ∈ V (G);
(ii) G is connected and twin-free.

Proof. (i) Suppose for contradiction that there is some component xv >
1/α. Note that x restricted to components other than v is a feasible solution
to SAr(G − v, w). Thus SAr(G − v, w) 6 SAr(G,w) − w(v)xv. By minimality
of G, there is a hitting set X ′ of G − v such that c(X ′) 6 α · SAr(G − v, w).
Therefore X := X ′ + v is a hitting set of G with c(X) = w(v) + c(X ′) 6
w(v) + α · SAr(G − v, w) 6 α · w(v)xv + α · SAr(G − v, w) 6 α · SAr(G,w), a
contradiction.

(ii) First, note that G is connected, otherwise there exists a connected compo-
nent H of G such that OPT(H,wH) > α·SAr(H,wH), where wH is the restriction
of w to V (H), contradicting the minimality of G.

Second, we show that G is twin-free. Note that if u, v are true twins we can
delete either of them, say v, and set w′(u) := w(u) + w(v), w′(c) := w(c) for
c distinct from u and obtain a smaller weighted graph (G′, w′). We claim that

64 6. CLUSTER VERTEX DELETION

SAr(G
′, w′) 6 SAr(G,w). To see this, let x be an optimal solution to SAr(G,w),

let x′u := min(xu, xv) and x′w := xw for w 6= u, v. By symmetry, this defines a
feasible solution x′ to SAr(G

′, w′) of weight∑
w 6=v

w′(w)x′w = (w(u) + w(v)) min(xu, xv) +
∑
c 6=u,v

w(c)xc 6
∑
c

w(c)xc .

This proves the claim.
Since |G′| < |G| there is some hitting set X ′ of G′ such that w′(X ′) 6

α · SAr(G′, w′). Let X := X ′ if u /∈ X ′ and X := X ′ + v otherwise. In either
case, w(X) = w′(X ′) 6 α · SAr(G′, w′) 6 α · SAr(G,w), a contradiction. Hence,
G is twin-free. �

Lemma 6.15. If (G,w) is a minimum order weighted graph such that
OPT(G,w) > 5/2 · SA1(G,w), then G is triangle-free and claw-free.

Proof. First, we show that G is triangle-free. Suppose G contains a triangle
with vertices u, v and w. Since G is twin-free, every edge of the triangle has
a distinguisher. Without loss of generality, P3(G) contains {u, v, y}, {u,w, y},
{v, w, z} and {u, v, z} where y, z are distinct vertices outside the triangle. It
is easy to see that, for instance, edge uw is a diagonal contained in a P3. By
Lemmas 6.13 and 6.14.(i), we obtain a contradiction, and conclude that G is
triangle-free.

A similar argument shows that G cannot contain a claw because again there
will be at least one induced P3 containing a diagonal, which yields a contradiction
by Lemmas 6.13 and 6.14.(i). We leave the details to the reader. �

Theorem 6.16. For every graph G, the integrality gap of SA1(G) is at most
5/2.

Proof. We show that for every cost function c on the vertices of G, there
exists some hitting set X such that c(X) 6 5/2 · SA1(G,w). Suppose not, and
let (G,w) be a minimum order counterexample. By Lemma 6.15, G is triangle-
free and claw-free. Hence the maximum degree of G is at most 2. Since G is
connected, by Lemma 6.14.(ii), G is either a path or a cycle.

We claim that in fact SA0(G,w) (the basic LP) has integrality gap at most 2
in this case.

Paths are solved exactly since the coefficient matrix of the LP is totally
unimodular in this case, by the consecutive ones property [59].

Now suppose that G is a cycle, and let x be an extreme optimal solution
of SA0(G,w). First, assume that there is some v ∈ V (G) such that xv > 1/2.
Since G − v is a path, there exists a hitting set X ′ in G − v of weight w(X ′) 6∑

u6=v w(u)xu, by the previous paragraph. Hence, we see that X := X ′ + v

is a hitting set of G with w(X) = w(v) + w(X ′) 6 w(v) +
∑

u6=v w(u)xu 6
2
∑

uw(u)xu = 2 SA0(G,w). On the other hand if xv < 1/2 for all vertices v,
then there can be no vertex v with xv = 0 since then xu + xv + xw > 1 implies
max(xu, xw) > 1/2, where u,w are the neighbors of v in G. So 0 < xv < 1/2 for
all v ∈ V (G).

Therefore, extreme point x is the unique solution of |G| equations of the form
xu + xv + xc = 1 for {u, v, c} ∈ P3(G). Hence xv = 1/3 for all vertices. Thus

6.4. POLYHEDRAL RESULTS 65

SA0(G,w) = 1/3 ·w(G). Now notice that since G is a cycle we can partition the
vertices of G into two disjoint hitting sets X and Y . Without loss of generality
assume that w(X) 6 1/2 · w(G). Then w(X) 6 3/2 · SA0(G,w). This concludes
the proof that the integrality gap is at most 5/2. �

Theorem 6.17. For every ε > 0 there is some instance (G,w) of CVD
such that OPT(G,w) > (5/2− ε) SA1(G,w).

Proof. We show there is a graphG for which every hitting setX has w(X) >
(5/2− ε) SA1(G,w) for w := 1G. Let G be a graph whose girth is at least k for
some constant k > 5 and with the independence number α(G) 6 n/k where
n := |G|. It can be shown via the probabilistic method that such a G exists,
see [1]. Set w(v) := 1 for all v ∈ V (G). We have w(X) > n(1 − 2/k) for every
hitting set X. To see this observe that since G is triangle-free and α(G) 6 n/k,
when we remove X we will get at most n/k components each of size at most 2.
Thus there are at most 2n/k vertices in G −X, so |X| > n − 2n/k. Therefore,
OPT(G,w) > (1− 2/k)n.

In order to show SA1(G,w) 6 2n/5, we construct the following feasible solu-
tion x to SA1(G,w). Set xv := 2/5 for all v ∈ V (G) and xvu := 0 if vu ∈ E(G)
and xvu := 1/5 if vu /∈ E(G). The inequalities defining SA1(G) are all satisfied
by x. This is obvious for inequalities (1), (3) and (4). For inequality (2), notice
that at most one of da, db, dc can be an edge of G, since otherwise G would
have a cycle of length at most 4. Thus (2) is satisfied too, x ∈ SA1(G) and
SA1(G,w) 6 2n/5.

This completes the proof since, by taking k > 5/ε, we have OPT(G,w) >
n(1− 2/k) > (5/2− ε)2n/5 > (5/2− ε) SA1(G,w). �

By relying on Theorem 6.2, we now show that the integrality gap decreases
to 2 + ε after applying poly(1/ε) rounds of Sherali-Adams.

Theorem 6.18. For every fixed ε > 0, performing r = poly(1/ε) rounds of
the Sherali-Adams hierarchy produces an LP relaxation of CVD whose integrality
gap is at most 2 + ε. That is, OPT(G,w) 6 (2 + ε) SAr(G,w) for all weighted
graphs (G,w).

Proof. In order to simplify the notation below, let us assume that 2/ε is
integer. For instance, we could restrict to ε = 2−l for some l ∈ Z>1. This does
not hurt the generality of the argument. We take r := 1+(2/ε)4. We may assume
that ε < 1/2 since otherwise we invoke Theorem 6.16 (taking r = 1 suffices in
this case).

Let (G,w) be a counterexample to the theorem, with |G| minimum. By
Lemma 6.14.(i), for every optimal solution x to SAr(G,w), every vertex v ∈ V (G)
has xv < 1/(2 + ε). By Lemma 6.14.(ii), G is twin-free (and connected).

We will use the following fact several times in the proof: for all R ⊆ V (G)
with |R| 6 r and every x ∈ SAr(G), the restriction of x to the variables in R is a
convex combination of hitting sets of G[R]. This is easy to see since, denoting by
xR the restriction of x, we get xR ∈ SAr(G[R]) and the Sherali-Adams hierarchy
is known to converge in at most “dimension-many” rounds, see for instance [19].

First, we claim that G has no clique of size at least 2/ε. Suppose otherwise,
let C be a clique of size k := 2/ε and letD be a minimal set such that each edge of

66 6. CLUSTER VERTEX DELETION

C has a distinguisher in D. Let H := G[C∪D]. Then, following the construction
from Section 6.2, one can obtain a weight function wH such that wH(H) = 2k−1,
and wH(X) > k − 1 for any hitting set X of H: see [28, Lemma 3] for the full
construction, whose proof also shows that |H| 6 2k − 1 6 r. Since every valid
inequality supported on at most r vertices is valid for SAr(G), the inequality∑

v wH(v)xv > k − 1 is valid for SAr(G). Since wH(H) = 2k − 1, this implies
that for all x ∈ SAr(G), there is some vertex a ∈ V (H) with xa > (k−1)/(2k−1).
Since (k − 1)/(2k − 1) > 1/(2 + ε), we get a contradiction. This proves our first
claim.

Second, we claim that for every v0 ∈ V (G), the subgraph of G induced by the
neighborhood N(v0) has no stable set of size at least 2/ε. The proof is similar to
that for cliques given above, except that this time we let H be the induced star
(K1,k) on v0 and a stable set S of size k = 2/ε. The weight function wH given
by Algorithm 6.7 has wH(v0) = k − 1 and wH(v) = 1 for all v ∈ S. Notice that
once again wH(H) = 2k − 1. The star inequality

∑
v wH(v)xv > k − 1 is valid

for SAr(G), which guarantees that for every x ∈ SAr(G) there is some a ∈ V (H)
which has xa > (k − 1)/(2k − 1) > 1/(2 + ε). This establishes our second claim.

Third, we claim that the neighborhood of every vertex v0 induces a chordal
subgraph of G. Suppose that C is a hole in G[N(v0)]. We first deal with the
case |C| 6 r − 1 = (2/ε)4. We can repeat the same proof as above, letting H be
the induced wheel on V (w) + v0 and using the weight function wH defined in the
proof of Lemma 6.3. Consider the wheel inequality

∑
v wH(v)xv > k − 3, where

k := |H| = |C|+ 1. Since the wheel has at most r vertices, the wheel inequality
is valid for SAr(G). Since wH(H) = 2k − 6 = 2(k − 3), for every x ∈ SAr(G),
there is some a ∈ V (H) which has xa > 1/2 > 1/(2+ ε). This concludes the case
where |C| is “small”.

Now, assume that |C| > r, and consider the wheel inequality with right-hand
side scaled by 2/(2 + ε). Suppose this inequality is valid for SAr(G). This still
implies that some vertex a of H has xa > 1/(2 + ε), for all x ∈ SAr(G), which
produces the desired contradiction. It remains to prove that the scaled wheel
inequality is valid for SAr(G).

Let F denote any r-vertex induced subgraph of H that is a fan. Hence,
F contains v0 as a universal vertex, plus a path on r − 1 vertices. Letting
wF (v0) := r − 3 − b(r − 1)/3c and wF (v) := 1 for v ∈ V (F − v0), we get
the inequality

∑
v wF (v)xv > r − 3, which is valid for SAr(G). By taking all

possible choices for F , and averaging the corresponding inequalities, we see that
the inequality(

r − 3−
⌊
r − 1

3

⌋)
xv0 +

r − 1

k − 1

∑
v∈V (H−v0)

xv > r − 3

⇐⇒ k − 1

r − 1

(
r − 3−

⌊
r − 1

3

⌋)
xv0 +

∑
v∈V (H−v0)

xv >
k − 1

r − 1
(r − 3)

is valid for SAr(G). It can be seen that this inequality dominates the scaled wheel
inequality, in the sense that each left-hand side coefficient is not larger than the
corresponding coefficient in the scaled wheel inequality, while the right-hand side
is not smaller than the right-hand side of the scaled wheel inequality. Therefore,

6.4. POLYHEDRAL RESULTS 67

the scaled wheel inequality is valid for SAr(G). This concludes the proof of our
third claim.

By the first, second and third claim2, |N(v0)| 6 ω(G[N(v0)]) ·α(G[N(v0)]) 6
4/ε2 for all choices of v0. This implies in particular that |N62[v0]| 6 1+16/ε4 = r.
Now let H := G[N62[v0]]. Theorem 6.2 applies since G is twin-free, by our
second claim. Let wH be the corresponding weight function. The inequality∑

v wH(v)xv > OPT(H,wH) is valid for SAr(G).
Let λ∗ be defined as in Step 15 of Algorithm 5, and let a ∈ V (G) denote any

vertex such that (c−λ∗wH)(a) = 0. By minimality ofG, there exists in (G′, w′) :=
(G−a, c−λ∗wH) a minimal hitting set X ′ of weight w′(X ′) 6 (2+ε) SAr(G

′, w′).
We let X := X ′ in case X ′ is a hitting set of G, and X := X ′ + a otherwise.
Assume that X = X ′ + a, the other case is easier. We have

c(X) = w′(X ′) + λ∗wH(X)

6 (2 + ε) SAr(G
′, w′) + λ∗(wH(H)− 1)

6 (2 + ε) SAr(G
′, w′) + 2λ∗OPT(H,wH)

6 (2 + ε) (SAr(G
′, w′) + λ∗OPT(H,wH)) .

By LP duality, we have SAr(G,w) > SAr(G
′, w′) +λ∗OPT(H,wH). This implies

that c(X) 6 (2 + ε) SAr(G,w), contradicting the fact that (G,w) is a counterex-
ample. This concludes the proof. �

We now complement the result above by showing that every LP relaxation of
CVD with (worst case) integrality gap at most 2−ε must have super-polynomial
size. The result is a simple consequence of an analogous result of [5] on the
integrality gap of Vertex Cover, and of the straightforward reduction from
Vertex Cover to CVD.

Proposition 19. For infinitely many values of n, there is a graph G on n vertices
such that every size-no(logn/ log logn) LP relaxation of CVD on G has integrality
gap 2− o(1).

Proof. In [5] a similar result is proved for LP-relaxations of Vertex
Cover: for infinitely many values of n, there is a graph G on n vertices such that
every size-no(logn/ log logn) LP relaxation of Vertex Cover on G has integrality
gap at least 2− ε, where ε = ε(n) = o(1) is a non-negative function.

Let G be such a graph, and let G+ be the graph obtained from G by attaching
a pendant edge to every vertex. It is easy to see that U ⊆ V (G) is a hitting set
for G+ if and only if U is a vertex cover of G.

Toward a contradiction, suppose that Ax > b is a size-no(logn/ log logn) LP
relaxation of CVD on G+ with integrality gap at most 2 − δ, for a fixed δ > ε

(where x ∈ Rd for some dimension d depending on G). For every c+ ∈ QV (G+)
>0

there exists a hitting set X of G+ such that c+(X) 6 (2− δ) LP(G+, c+).
We can easily turn Ax > b into an LP relaxation for Vertex Cover. For

every vertex cover U of G, we let the corresponding point be the point πU ∈ Rd

for U seen as a hitting set in G+. For every c ∈ QV (G)
>0 , we define c+ ∈ QV (G+)

>0 via

2Recall that, for any perfect graph H, one has |H| 6 α(H) · ω(H).

68 6. CLUSTER VERTEX DELETION

c+(v) := w(v) for v ∈ V (G), and c+(v) :=
∑

u∈V (G)w(u) for v ∈ V (G+)− V (G).
Then, we let the affine function fc for c be the affine function fc+ for c+.

Since the integrality gap of Ax > b, seen as an LP relaxation of CVD, is at
most 2−δ, for every c ∈ QV (G)

>0 there exists a hitting set X of G+ whose weight is
at most (2−δ) LP(G+, c+), where c+ is the weight function corresponding to c. If
X contains any vertex of V (G+)−V (G), we can replace this vertex by its unique
neighbor in V (G), without any increase in weight. In this way, we can find a
vertex cover U of G whose weight satisfies w(u) 6 c+(X) 6 (2−δ) LP(G+, c+) =
(2 − δ) LP(G,w). Hence, the integrality gap of Ax > b as an LP relaxation
of Vertex Cover is also at most 2 − δ < 2 − ε. As the size of Ax > b is
no(logn/ log logn), this provides the desired contradiction. �

We point out that the size bound in the previous result can be improved.
Kothari, Meka and Raghavendra [48] have shown that for every ε > 0 there is
a constant δ = δ(ε) > 0 such that no LP relaxation of size less than 2n

δ has
integrality gap less than 2− ε for Max-CUT. Since Max-CUT acts as the source
problem in [5], one gets a 2n

δ size lower bound for Vertex Cover in order to
achieve integrality gap 2− ε. This also follows in a black-box manner from [48]
and [12]. The proof of Proposition 19 shows that the same bound applies to
CVD.

6.5. Concluding Remarks

In this chapter we provide a tight approximation algorithm for the cluster
vertex deletion problem (CVD). Our main contribution is the efficient construc-
tion of a local weight function on the vertices at distance at most 2 from any
vertex v0 such that every minimal hitting set of the input graph has local weight
at most twice the local optimum. If the subgraph induced by N(v0) (the first
neighborhood of v0) contains a hole, or a 2P3, then this turns out to be straight-
forward. The most interesting case arises when the local subgraph H is twin-free,
has radius 1, and moreover H[N(v0)] = H − v0 is chordal and 2P3-free. Such
graphs are very structured, which we crucially exploit.

Lemma 6.5 allows us to define the local weight function on the vertices distinct
from v0 and then later adjust the weight of v0. We point out that condition (ii)
basically says that the local weight function should define a hyperplane that
“almost” separates the hitting set polytope and the clique polytope of the chordal,
2P3-free graph H − v0. This was a key intuition which led us to the proof of
Theorem 6.2. If these polytopes were disjoint, this would be easy. But actually
it is not the case since they have a common vertex (as we show, H − v0 has a
hitting clique).

One natural question arising from our approach of CVD in general graphs is
the following: is the problem polynomial-time solvable on chordal graphs? This
seems to be a non-trivial open question, also mentioned in [15], where similar
vertex deletion problems are studied for chordal graphs. It could well be that
CVD in general chordal graphs is hard. Now, what about chordal, 2P3-free
graphs? We propose this as an open question.

Our second contribution is to study the CVD problem from the polyhedral
point of view, in particular with respect to the tightness of the Sherali-Adams

6.5. CONCLUDING REMARKS 69

hierarchy. Our results on Sherali-Adams fail to match the 2-approximation factor
of our algorithm (by epsilon), and we suspect this is not by chance. We believe
that, already for certain classes of triangle-free graphs, the LP relaxation given
by a bounded number of rounds of the Sherali-Adams hierarchy has an integrality
gap strictly larger than 2. Settling this is another open question. Our intuition
is that Sherali-Adams seems to have a hard time recovering the star inequality
(k − 1)xv0 +

∑k
i=1 xvi > k − 1, valid when N(v0) = {v1, . . . , vk} is a stable set.

As mentioned already in the introduction, we do not know any polynomial-
size LP or SDP relaxation with integrality gap at most 2 for CVD. In order to
obtain such a relaxation, it suffices to derive each valid inequality implied by
Lemmas 6.3, 6.4, 6.7 and also somehow simulate Lemma 6.8. A partial result
in this direction is that the star inequality has a bounded-degree sum-of-squares
proof. Using earlier results [28, Algorithm 1], this implies that a bounded number
of rounds of the Lasserre hierarchy provides an SDP relaxation for CVD with
integrality gap at most 2, whenever the input graph is triangle-free. This should
readily generalize to the wheel inequalities of Lemma 6.3 and of course to the
inequality of Lemma 6.4 (since the underlying graph has bounded size). However,
we do not know how for instance to derive the inequalities of Lemma 6.7. We
leave this for future work as our third open question from this chapter.

Our fourth open question is as follows: what is the best running time for
Algorithm 5? We think that it is possible to improve on our O(n4) upper bound.

CHAPTER 7

Split Graph Deletion

In this chapter, which is based on Drescher, Fiorini and Huynh [26], we move
to a problem which can be posed as an instance of E5-Vertex Cover. We
study this problem from the local ratio perspective. It is an example of good
subgraphs unlocking advanced algorithmic techniques from Graph Theory.

Recall from Chapter 1 that a split graph is a graph whose vertex set can be
partitioned into a clique K and a stable set S. Given a graph G and weight
function w : V (G)→ Q≥0, the Split Vertex Deletion (SVD) problem asks
to find a minimum weight set of vertices X such that G − X is a split graph.
It was shown by Foldes and Hammer [29] that a graph is a split graph if and
only it it does not contain a 4-cycle, 5-cycle, or a two edge matching as an
induced subgraph. Therefore, as an instance of E5-Vertex Cover, as seen
in Chapter 3, we can easily obtain a 5-approximation algorithm for SVD via
Algorithm 1. On the other hand, it is known that for every δ > 0, SVD does not
admit a (2 − δ)-approximation algorithm, unless P=NP or the Unique Games
Conjecture fails.

In Section 7.1 we start by explaining this hardness status in more detail.
We then state our result and put it into the context of previous work on SVD.
In Section 7.2 we define Clique-Stable Separators and state Theorem 7.2 by
Bousquet, Lagoutte and Thomassé [10] that our local ratio approach relies on.
We show Pk and P k are almost 2-good subgraphs in Lemma 7.6, and that the
intermediary graph class which forbids {Pk, P k} has a direct polynomial time
2-approximation algorithm for SVD. Plugging these parts into Algorithm 2 of
Section 3.2 in Chapter 3 gives the result.

7.1. Hardness

There is a simple approximation preserving reduction from Vertex Cover
to SVD given by Lokshtanov, Misra, Panolan, Philip, and Saurabh [55].

Their reduction is as follows. Given weighted graph (G,w), add to it a single
vertex v with weight W :=

∑
u∈V (G)w(u) that is adjacent to none of the vertices

of G. The weights on the vertices of G remain the same. Denote the resulting
weighted graph (G′, w′).

Clearly any feasible solution X ′ for (G′, w′) to SVD can be modified to be
disjoint from v. Such a solution X ′ is actually a vertex cover in G, that is, a
solution to Vertex Cover on (G,w), with the same weight.

Therefore, for every δ > 0, SVD does not admit a (2 − δ)-approximation
algorithm, unless P=NP or the Unique Games Conjecture fails [46].

71

72 7. SPLIT GRAPH DELETION

7.2. A Simple, almost tight approximation algorithm

Here we give a short (2+ε)-approximation algorithm. For every ε > 0, Loksh-
tanov et al. [55] recently gave a randomized (2 + ε)-approximation algorithm for
SVD. Their approach is based on the randomized 2-approximation algorithm, for
FVST [54] due to Lokshtanov, Misra, Mukherjee, Panolan, Philip, and Saurabh.
As we mentioned in Section 5.1 of Chapter 5, we viewed this approach as being
partly based on finding 2-good subgraphs with respect to a particular optimal
solution which is randomly found. Here, in the case of SVD guessing an opti-
mal solution seems to be more complicated and requires several new ideas and
insights.

Our main result is a much simpler deterministic (2 + ε)-approximation algo-
rithm for SVD.

Theorem 7.1. For every ε > 0, there is a (deterministic) (2 + ε)-
approximation algorithm for SVD.

As far as we can tell, the easy 5-approximation described above was the pre-
viously best (deterministic) approximation algorithm for SVD. Before describing
our algorithm and proving its correctness, we need a few definitions.

Definitions. A cut in a graph G is a pair (A,B) such that A ∪ B = V (G)
and A ∩ B = ∅. The cut (A,B) is said to separate a pair (K,S) where K is a
clique, and S a stable set if K ⊆ A and S ⊆ B. A family of cuts F is called
a clique-stable set separator if for all pairs (K,S) where K is a clique and S is
a stable set disjoint from K, there exists a cut (A,B) in F such that (A,B)
separates (K,S). For each k ∈ N, let Pk be the path on k vertices.

Clique-Stable Separator. The main technical ingredient we require is the
following theorem of Bousquet, Lagoutte and Thomassé [10].

Theorem 7.2 (Theorem 12 [10]). For every k ∈ N, there exists c(k) ∈ N
such that every n-vertex, {Pk, Pk}-free graph has a clique-stable set separator of
size at most nc(k).

We remark that [10] does not state that the clique-stable set separator can be
found in polynomial time, but it is easy to check that this is the case. The given
proof of Theorem 7.2 is a constructive, induction argument which can be turned
into a recursive algorithm that clearly runs in polynomial time, given that each
recursive step can be accomplished in polynomial time. The recursive step relies
on obtaining the disjoint sets V1, V2 each of size at least tkn for some 0 < tk ≤ 1/2,
as defined below in the theorem of Bousquet, Lagoutte and Thomassé [11]. Let
c(k) := (−1/ log2(1− tk)). Let V3 := V (G− V1 − V2). The algorithm recursively
builds separators on V1 ∪ V3 and on V2 ∪ V3 of size (|Vi|+ |V3)|)c(k) for i ∈ {1, 2},
which it used to then obtain a separator for G of size nc(k). The run time is
T7.2(n) = 2T7.2((1 − tk)n) + O(nc(k)) + T7.3(n). Where T7.3(n) is the run-time
required to obtain sets V1, V2.

Lemma 7.3 (Theorem 4 [11], Theorem 13 [10].). For every k, there is a constant
tk ∈ (0, 1/2], such that every {Pk, Pk}-free graph G contains two disjoint subsets

7.2. A SIMPLE, ALMOST TIGHT APPROXIMATION ALGORITHM 73

of vertices V1, V2, each of size at least tk · n, such that V1 and V2 are completely
adjacent or completely non-adjacent.

The proof of Lemma 7.3 is also constructive, and algorithmically efficient,
but relies on obtaining an "almost stable" set S0 guaranteed to exist by the
following theorem of Fox and Sudakov. It then finds and examines the connected
components of a subgraph of size at most |S0|. Therefore T7.3(n) ≤ T7.4(n) +
O(n2), where T7.4(n) is the run-time required to build S0 as defined below.

Theorem 7.4 (Theorem 1.1 [32]). For every positive integer k and every
γ ∈ (0, 1/2), there exists δ > 0 such that every n-graph G satisfies one of the
following:

• G induces all graphs on k vertices.
• G contains a set S0 of size at least δn with at most ε

(
n
2

)
edges in G[S0].

• G contains a set K0 of size at least δn with at least ε
(
n
2

)
edges in G[K0].

The proof of Theorem 7.4 is iterative and constructs S0 in polynomial time
but assumes the existence of sets A,B guaranteed by Erdős, and Hajnal [27].
The run time is T7.4(n) = d log γ−2

log 3/2
eT7.5(n) where T7.5(n) is the run time required

to find sets A,B as defined in Lemma 7.5 below.

Lemma 7.5 (Lemma 1.5 [27]). For each γ ∈ (0, 1/2), graph H on k vertices,
and H-free graph G on n ≥ 2 vertices, there are disjoint subsets A and B of
V (G) with |A|, |B| ≥ γk−1 n

k
such that either every vertex in A has at most γ|B|

neighbors in B, or every vertex in A has at least (1− γ)|B| neighbors in B.

Fortunately the proof of Lemma 7.5 is self-contained, algorithmic, and has
run time T7.5(n) ≤ T7.5(

γ(k−1)n
k

) + O(n), where n is the size of the graph, which
by the Master Theorem [21], is polynomial in n. Therefore, it is easy to see that
by composing these run-time formulas that T7.2(n) is polynomial in n.

Proof of Theorem 7.1. We are now ready to state and prove the correctness
of our local ratio based algorithm.

Lemma 7.6. Let (G,w) be a weighted graph. For any ε there is a k such that
Pk is a 2 + ε good subgraph.

Proof. Choose k even and sufficiently large so that 2k
k−4 ≤ 2 + ε. Suppose

some Pk ⊆ G. Define w1(v) := 1 if v ∈ Pk and w1(v) := 0 otherwise. Let
X be an optimal solution to SVD on Pk. A minimum cardinality vertex cover
of Pk has size at least k

2
. Therefore, X must include all of this vertex cover,

with the exception of one clique of size 2. See Page 28 in Chapter 3. Thus
w(X) = OPT(Pk, w1) ≥ k−4

2
so∑

v∈Pk

w1(v) = k ≤ 2k

k − 4
·OPT(Pk, w1) ≤ (2 + ε) OPT(Pk, w1).

Therefore Pk is strongly (2 + ε)-good. �

Corollary 7.7. Let (G,w) be a weighted graph. For any ε there is a k such that
Pk is a (2 + ε)-good subgraph.

74 7. SPLIT GRAPH DELETION

Proof. Since G is a split graph if and only if G is a split graph, this follows
from Lemma 7.6. �

Lemma 7.8. There is an algorithm that, given a weighted graph (G,w) and
a clique-stable set separator F of G, finds a feasible solution X to SVD such
that w(X) ≤ 2 OPTSVD(G,w) in time |F| · O(nc) where c is a constant, and
n := |V (G)|.

Proof. Let (A,B) ∈ F , and let XA denote be a 2-approximate solution for
vertex cover on (G[A], w), and XB for vertex cover on (G[B], w). Since (A,B)
is a cut, XA ∪XB is a hitting set of SVD. Let XAB be a minimal weight hitting
set such that G − XAB splits into parts KA and SB where KA ⊆ A is a clique,
and SB ⊆ B is a stable set. Notice that KA is a vertex cover for G[A], and SB
is a vertex cover for G[B]. Since XB, XA are 2-approximate solutions for vertex
cover on (G[B], w) and (G[A], w) respectively, we have that w(XA ∪ XB) =
w(XA) + w(XB) ≤ 2 OPTVC(G[A], w) + 2 OPTVC(G[B], w) ≤ 2w(XAB).

Now let X∗ be a minimum weight hitting set for (G,w). Thus G−X∗ splits
into parts K∗ and S∗ where K∗ is a clique and S∗ a stable set. By the definition
of F there must be some cut (A∗, B∗) ∈ F such that K∗ ⊆ A∗, S∗ ⊆ B∗. We
can find it in time |F| · O(nc) by examining each pair (A,B) ∈ F . Computing
2-approximate solutions XA, XB for vertex cover on (G[B], w) and (G[A], w)
respectively can be done in O(n2) time. We choose the pair (A∗, B∗) which
minimizes (w(XA)+w(XB)). By the remarks above, w(XA∗ ∪XB∗) ≤ 2w(X∗) =
2 OPTSVD(G,w). �

We now prove the main theorem, which clearly plugs into the local ratio
G-Vertex Deletion framework of Algorithm 2 with α = 2 + ε, as given in
Chapter 3.

Proof of Theorem 7.1. Let G be an n-vertex graph, w : V (G) → Q≥0,
and ε > 0. By Lemma 7.6, Pk is (2 + ε)-good, where k = k(ε) is a sufficiently
large integer. Therefore by the local ratio method [33], as in Algorithm 2, we may
assume that G is Pk-free. By Corollary 7.7 we may also assume that G is Pk-free.
It remains to define the subroutine at line 13 in Algorithm 2. By Theorem 7.2,
we can efficiently compute a polynomial-size clique-stable set separator F for G.
Then, plugging F in the algorithm of Lemma 7.8, we find a hitting set X for G
such that w(X) ≤ 2 OPTSVD(G,w).

�

Part 3

Conclusions

CHAPTER 8

Open Questions

We now list some questions which naturally presented themselves during our
work in Part 2, which we were unable to answer. We also list some problems
which appear to be suitable targets for the techniques presented in this thesis.

The first question is motivated by experimental results we obtained. We
developed code which strengthens a basic LP formulation by applying k rounds
of Sherali-Adams. It is freely available and packaged here https://pypi.org/
project/sherali-adams. We ran exhaustive experiments for tournaments of
size at most 9 and could not find a tournament T such that OPT(T,1T)

SA2(T,1T)
> 2.

Question 3. For FVST, what is the integrality gap of SA2 ?

We saw that the integrality gap of SA1 for CVD is 5
2
in Chapter 6 and in

Chapter 5 that it is 7
3
for FVST. This evidence suggests that Sherali-Adams

might converge faster for FVST than for CVD. We state the analog of Theo-
rem 6.18 as an open question.

Question 4. For FVST, is there a constant k such that the integrality gap
of SAk is 2 + ε?

In Chapter 6 we gave a 2-approximation algorithm for the CVD. We con-
sider a seemingly similar problem: Deletion to P4-free (cograph) in a weighted
graph. This problem can be posed as an instance of E4-Vertex Cover, and
therefore there is a trivial a 4-approximation algorithm. We wonder if some of
the techniques of Chapter 6 could lead to a better approximation factor.

Question 5 (Deletion to Cograph). Recall P4 are paths of order 4. Let (G,w)
be a weighted graph. Is there an α < 4 such that there is an α-approximation
algorithm to the problem of finding minimum w(X) such that G−X contains no
P4?

In Chapter 6 we gave a O(n4) worst case analysis of the run-time for Algo-
rithm 5. We wonder if there are more sophisticated ideas that could give a faster
implementation or tighter analysis. For example, O(n2) time is spent computing
the new sets of true twins each time a vertex is removed. Perhaps a dynamic
data structure could help improve this.

Question 6. Is there a faster implementation or tighter analysis of Algo-
rithm 5 Cluster-VD-apx(G,w)?

In Chapter 4 we gave a quick 3-approximation algorithm for Claw-VD re-
stricted to triangle-free, weighted graphs.

Question 7. Is there a 3-approximation algorithm for the Claw-VD prob-
lem in general weighted graphs?

77

https://pypi.org/project/sherali-adams
https://pypi.org/project/sherali-adams

78 8. OPEN QUESTIONS

Another intriguing problem is, to what extent our methods can be adapted
to other E3-Vertex Cover problems. We mention an open question due to
László Végh [66]. We suspect that our results on diagonals from Chapter 3 could
help to develop rounding algorithms in many classes of 3-uniform hypergraphs.
In particular, we see that Lemma 3.7 is applicable in both CVD, and FVST.

Question 8. For which classes of 3-uniform hypergraphs and which ε > 0
does Ek-Vertex Cover admit a (3− ε)-approximation algorithm?

CHAPTER 9

Conclusions

In this work we explored two general frameworks for designing approximation
algorithms for instances of G-Vertex Deletion. Iterative rounding and the
local ratio method.

As we have seen, both methods give natural, and immediate algorithms for
trivial k-approximation guarantee. The use of SA1 and diagonals, seems to help
‘juice’ the LP rounding approach while still remaining at a fairly general level.

9.1. Constant rounds of Sherali-Adams

LP strengthening via a constant number of rounds of Sherali-Adams is a nat-
ural rounding approach. It plugs into the common iterative rounding method. Its
inequalities, though derived through a mechanical procedure, encode a surprising
amount of information about the structure of an optimal solution. Furthermore,
it is something, as algorithm designers we can just try, without having to study
the problem in depth. As such, these extended formulations can be a valuable
source of insight about the problem.

On the other hand, it can be hard to understand what additional information
is obtained during each round and how exactly it is encoded in the model. This
understanding is necessary however, in order to prove properties about the solu-
tions it returns. Further more, even when applied to simple LP’s, the number of
variables and inequalities quickly becomes unwieldy for a human to analyze by
hand.

9.2. Local Ratio

We are amazed at the effectiveness of this deceptively simple design frame-
work. It does not even involve solving an LP, yet completely closes the hardness
gap for two of the main problems we studied. Deterministically in the case
of CVD, and for FVST in the innovative randomized setting of [54]. We come
within ε of closing the gap for the SVD by simply exploiting properties of graphs
that do not contain paths of order k or their complement.

9.2.1. Flexibility. We saw in the CVD problem, how to recursively apply
the method to always obtain a good weight function. On the other hand, al-
though we can iteratively round an LP, it is unclear how to utilize a recursive
combinatorial structure of the underlying graph. In contrast, our good subgraph
approach only requires us to find a weight function with a subgraph, but we are
free to do so by any means. We see a good example of this with our algorithm
for SVD, where we find some k for which induced paths of order k are 2 + ε
good, and then deduce that the remaining graph has a 2-approximate solution.

79

80 9. CONCLUSIONS

9.2.2. Good Subgraphs. A strongly good subgraph of size at most l has
an analogous inequality in SAk for some k ≤ l. However the weaker notion of
good subgraph does not seem to have an obvious analog in the LP world. We saw
this in our work on Claw-VD. K1,4, a strongly 3 good subgraph was exploitable
in SA1 via diagonal arguments, however K1,3 which was 3 good in the case of
triangle free graphs, did not seem to give us much help in SA1.

9.2.3. Run Time. One might be tempted to conclude that the local ratio
technique is typically slower. This is because a common approach is to first define
subgraphs of size k which are α good, and then delete them. This generally leads
to a run time of O(nk) unless there is some otherwise special method for finding
them. The approach we use in CVD however, can obtain potentially large, not
constantly bounded subgraphs which are 2-good, quickly through a recursive
definition.

Bibliography

[1] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley Publishing, 4th
edition, 2016.

[2] M. Aprile, M. Drescher, S. Fiorini, and T. Huynh. A simple
7/3-approximation algorithm for feedback vertex set in tournaments.
arXiv:2008.08779, 2020.

[3] M. Aprile, M. Drescher, S. Fiorini, and T. Huynh. A tight approximation
algorithm for the cluster vertex deletion problem. In M. Singh and D. P.
Williamson, editors, Integer Programming and Combinatorial Optimization,
pages 340–353, Cham, 2021. Springer International Publishing.

[4] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the
weighted vertex cover problem. In G. Ausiello and M. Lucertini, editors,
Analysis and Design of Algorithms for Combinatorial Problems, volume 109
of North-Holland Mathematics Studies, pages 27–45. North-Holland, 1985.

[5] A. Bazzi, S. Fiorini, S. Pokutta, and O. Svensson. No small linear program
approximates vertex cover within a factor 2− ε. Mathematics of Operations
Research, 44(1):147–172, 2019.

[6] P. A. Bernstein and N. Goodman. Power of natural semijoins. SIAM Journal
on Computing, 10(4):751–771, 1981.

[7] J. R. Blair and B. Peyton. An introduction to chordal graphs and clique
trees. In Graph theory and sparse matrix computation, pages 1–29. Springer,
1993.

[8] B. Bollobás and P. Erdös. Cliques in random graphs. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 80, pages 419–
427. Cambridge University Press, 1976.

[9] A. Boral, M. Cygan, T. Kociumaka, and M. Pilipczuk. A fast branching
algorithm for cluster vertex deletion. Theory Comput. Syst., 58(2):357–376,
2016.

[10] N. Bousquet, A. Lagoutte, and S. Thomassé. Clique versus independent set.
European Journal of Combinatorics, 40:73 – 92, 2014.

[11] N. Bousquet, A. Lagoutte, and S. Thomassé. The Erdős–Hajnal conjec-
ture for paths and antipaths. Journal of Combinatorial Theory, Series B,
113:261–264, 2015.

[12] G. Braun, S. Pokutta, and A. Roy. Strong reductions for extended formula-
tions. Math. Program., 172(1–2):591–620, 2018.

[13] G. Braun, S. Pokutta, and D. Zink. Inapproximability of combinatorial
problems via small LPs and SDPs. In Proceedings of STOC 2015, pages
107–116, New York, NY, USA, 2015. ACM.

[14] M.-C. Cai, X. Deng, and W. Zang. An approximation algorithm for feedback
vertex sets in tournaments. SIAM J. Comput., 30(6):1993–2007, 2001.

81

82 Bibliography

[15] Y. Cao, Y. Ke, Y. Otachi, and J. You. Vertex deletion problems on chordal
graphs. Theoretical Computer Science, 745:75–86, 2018.

[16] S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. Approximate
Constraint Satisfaction Requires Large LP Relaxations. Proc. FOCS 2013,
0:350–359, 2013.

[17] J. Chen, Y. Liu, S. Lu, B. O’sullivan, and I. Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. In Proceedings of
the fortieth annual ACM symposium on Theory of computing, pages 177–
186, 2008.

[18] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong
perfect graph theorem. Annals of Mathematics, pages 51–229, 2006.

[19] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming, volume
271 of Graduate Texts in Mathematics. Springer, Cham, 2014.

[20] W. J. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combina-
torial optimization. Oberwolfach Reports, 5(4):2875–2942, 2009.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms, 3rd Edition. MIT press, 2009.

[22] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets
of finite graphs. Information and computation, 85(1):12–75, 1990.

[23] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

[24] H. N. de Ridder et al. Information System on Graph Classes and their In-
clusions (ISGCI). https://www.graphclasses.org.

[25] I. Dinur and S. Safra. On the hardness of approximating minimum vertex
cover. Annals of Mathematics, pages 439–485, 2005.

[26] M. Drescher, S. Fiorini, and T. Huynh. A simple (2 + ε)-approximation
algorithm for split vertex deletion. arXiv preprint arXiv:2009.11056, 2020.

[27] P. Erdős and A. Hajnal. Ramsey-type theorems. volume 25, pages 37–52.
1989. Combinatorics and complexity (Chicago, IL, 1987).

[28] S. Fiorini, G. Joret, and O. Schaudt. Improved approximation algorithms for
hitting 3-vertex paths. In International Conference on Integer Programming
and Combinatorial Optimization (IPCO ’16), pages 238–249. Springer, 2016.

[29] S. Foldes and P. L. Hammer. Split graphs having dilworth number two.
Canadian Journal of Mathematics, 29(3):666–672, 1977.

[30] F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact algorithms
via monotone local search. J. ACM, 66(2):Art. 8, 23, 2019.

[31] F. V. Fomin, T. Le, D. Lokshtanov, S. Saurabh, S. Thomassé, and M. Zehavi.
Subquadratic kernels for implicit 3-hitting set and 3-set packing problems.
ACM Trans. Algorithms, 15(1):13:1–13:44, 2019.

[32] J. Fox and B. Sudakov. Induced Ramsey-type theorems. Advances in Math-
ematics, 219(6):1771–1800, 2008.

[33] A. Freund, R. Bar-Yehuda, and K. Bendel. Local ratio: a unified framework
for approximation algorithms. ACM Computing Surveys, 36:422–463, 01
2005.

[34] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197,

https://www.graphclasses.org

Bibliography 83

1981.
[35] M. Grötschel, L. Lovász, and A. Schrijver. Polynomial algorithms for perfect

graphs. In North-Holland mathematics studies, volume 88, pages 325–356.
Elsevier, 1984.

[36] A. Gupta, E. Lee, J. Li, P. Manurangsi, and M. Wlodarczyk. Losing
treewidth by separating subsets. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’19), pages 1731–
1749. SIAM, 2019.

[37] V. Guruswami and E. Lee. Inapproximability of feedback vertex set for
bounded length cycles. In Electronic Colloquium on Computational Com-
plexity (ECCC), volume 21, page 2, 2014.

[38] V. Guruswami and E. Lee. Inapproximability of H-transversal/packing.
SIAM Journal on Discrete Mathematics, 31(3):1552–1571, 2017.

[39] E. Halperin. Improved approximation algorithms for the vertex cover prob-
lem in graphs and hypergraphs. SIAM Journal on Computing, 31(5):1608–
1623, 2002.

[40] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[41] S. Hosseinian and S. Butenko. Polyhedral properties of the induced cluster
subgraphs. Discrete Applied Mathematics, 297:80–96, 2021.

[42] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-parameter
algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196–217,
2010.

[43] K. Jain. A factor-2 approximation algorithm for the generalized steiner
network problem. In Proceedings 39th Annual Symposium on Foundations
of Computer Science (FOCS ’98), pages 448–457, 1998.

[44] G. Karakostas. A better approximation ratio for the vertex cover problem.
In International Colloquium on Automata, Languages, and Programming
(ICALP ’05), pages 1043–1050. Springer, 2005.

[45] R. Karp. Reducibility among combinatorial problems. In R. Miller and
J. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

[46] S. Khot and O. Regev. Vertex cover might be hard to approximate to within
2− ε. J. Comput. System Sci., 74(3):335–349, 2008.

[47] D. König. Über graphen und ihre anwendung auf determinantentheorie und
mengenlehre. Mathematische Annalen, 77(4):453–465, 1916.

[48] P. K. Kothari, R. Meka, and P. Raghavendra. Approximating rectangles
by juntas and weakly-exponential lower bounds for LP relaxations of CSPs.
In H. Hatami, P. McKenzie, and V. King, editors, Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 590–603. ACM, 2017.

[49] M. Kumar and D. Lokshtanov. Faster exact and parameterized algorithm
for feedback vertex set in bipartite tournaments. In 36th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2016.

84 Bibliography

[50] M. Kumar, S. Mishra, N. Safina Devi, and S. Saurabh. Approximation algo-
rithms for node deletion problems on bipartite graphs with finite forbidden
subgraph characterization. Theoretical Computer Science, 526:90–96, 2014.

[51] L. C. Lau, R. Ravi, and M. Singh. Iterative methods in combinatorial opti-
mization, volume 46. Cambridge University Press, 2011.

[52] J. M. Lewis and M. Yannakakis. The node-deletion problem for heredi-
tary properties is np-complete. Journal of Computer and System Sciences,
20(2):219–230, 1980.

[53] D. Lokshtanov. Personal communication. October 2020.
[54] D. Lokshtanov, P. Misra, J. Mukherjee, F. Panolan, G. Philip, and

S. Saurabh. 2-approximating feedback vertex set in tournaments. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA ’20), pages 1010–1018. SIAM, 2020.

[55] D. Lokshtanov, P. Misra, F. Panolan, G. Philip, and S. Saurabh. A (2+
ε)-factor approximation algorithm for split vertex deletion. In 47th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[56] M. Mnich, V. V. Williams, and L. A. Végh. A 7/3-approximation for feed-
back vertex sets in tournaments. In P. Sankowski and C. D. Zaroliagis,
editors, 24th Annual European Symposium on Algorithms, ESA 2016, Au-
gust 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 67:1–67:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[57] K. Murty. G.(1983) linear programming.
[58] N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of

tree-width. Journal of algorithms, 7(3):309–322, 1986.
[59] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.
[60] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the con-

tinuous and convex hull representations for zero-one programming problems.
SIAM J. Discrete Math., 3(3):411–430, 1990.

[61] E. Speckenmeyer. On feedback problems in digraphs. In Graph-theoretic
Concepts in Computer Science (Kerkrade, 1989), volume 411 of Lecture
Notes in Comput. Sci., pages 218–231. Springer, Berlin, 1990.

[62] R. E. Tarjan. Decomposition by clique separators. Discrete mathematics,
55(2):221–232, 1985.

[63] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.

[64] D. Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory
of Computing Systems, 65(2):323–343, 2021.

[65] V. V. Vazirani. Approximation algorithms. Springer, 2001.
[66] L. A. Végh. Personal communication.
[67] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algo-

rithms. Cambridge University Press, 2011.
[68] J. You, J. Wang, and Y. Cao. Approximate association via dissociation.

Discret. Appl. Math., 219:202–209, 2017.

	Summary
	Résumé
	Acknowledgements
	Part 1. Background and Context
	Chapter 1. Introduction
	Chapter 2. Preliminaries
	2.1. Sets and Weight functions
	2.2. Graphs
	2.3. Hypergraphs
	2.4. Combinatorial Optimization
	2.5. Algorithms

	Chapter 3. Tools and Techniques
	3.1. Local Ratio Lemma
	3.2. Good Subgraphs
	3.3. Polyhedral Tools
	3.4. Diagonals in E3-Vertex Cover

	Part 2. The Main Results
	Chapter 4. Claw Vertex Deletion
	4.1. Background
	4.2. Good Subgraphs
	4.3. A Rounding Attempt
	4.4. Hardness Result
	4.5. Concluding Remarks

	Chapter 5. Feedback Vertex Problem in Tournaments
	5.1. Overview
	5.2. Diagonals and Light Tournaments
	5.3. The Layering Procedure
	5.4. The Algorithm
	5.5. Concluding Remarks

	Chapter 6. Cluster Vertex Deletion
	6.1. Overview
	6.2. Finding 2-good induced subgraphs
	6.3. Running-time Analysis
	6.4. Polyhedral results
	6.5. Concluding Remarks

	Chapter 7. Split Graph Deletion
	7.1. Hardness
	7.2. A Simple, almost tight approximation algorithm

	Part 3. Conclusions
	Chapter 8. Open Questions
	Chapter 9. Conclusions
	9.1. Constant rounds of Sherali-Adams
	9.2. Local Ratio

	Bibliography

